Proving noninterference for a while-language
using small-step operational semantics

Andrew Myers
March 2011~

This is a tutorial on how to prove the soundness of a security type system in the con-
text of a simple language, using small-step semantics. The original proof of soundness
for such a language [VSI96] was done using big-step semantics. Small-step semantics
is interesting because it is more compatible with language features such as concurrency
and nondeterminism, allowing it to “scale up” to more interesting languages. But it also
presents some added challenges.

1 Syntax

The language is a simple while-language similar to IMP [Win93], but with security
typing. Let us call it W.

r € Var
M € Var — Z
a(€AExp):=n |z | ai+az | a1 —az | a1 X ag

t(eT):=
(G BEXp) =1 | b1 A by ‘ b1 V by ‘ -b | a1 = as | a1 < as
¢ (€ Com) ::

= true | false
=skip | z:=a | ¢1; co | ifbthenc, else co | whilebdo c

2 Operational semantics

For simplicity, big-step semantics are used for arithmetic and boolean expressions.

Arithmetic Expressions

The relation (M, a) || n means a evaluates to integer n in memory M.

*This tutorial was originally written in November 2009 for the Marktoberdorf Summer School on Logics
and Languages for Reliability and Security. It was updated in March 2011 to clarify the completeness
argument, and a few small corrections were made in July 2012 for use in the Oregon Programming Languages
Summer School.

(M;n) I n (M, z) |} M(x)

<M,CL1>»U«’/11 <M,a2>an2 n3:n1@n2
(M, a1 @ az) | n3

Boolean Expressions

Analogous to arithmetic expressions.

Commands

(M, skip) is a final configuration. We write f[x := y] for the function g such that
g9(z) = yandVa' # x.g(z') = f(2).

(M,a) I n
(M, z = a) — (M[x := n], skip) (M, skip; ¢) — (M, c)

(M,c1) — (M, ¢))
(M, c15c0) — (M’ ¢} ¢2)

(M, b) | true (M, b) | false
(M, if b then ¢, else co) — (M, c¢q) (M, if bthen c; else co) — (M, c2)

(M, while bdo ¢) — (M, if b then (c; while b do ¢) else skip)

3 Static semantics

Labels are drawn from a pointed lattice £ with a bottom element L. The mapping
I' : Var — L gives the unique label of each variable name.

Arithmetic typing

The judgment - a : L means a has label L.

l—a1:L1 |‘(L2:L2
F‘%F(CL’) Fn:l Fal@aQ:Lll_ng

Boolean typing

The judgment - b : L means b has label L.

FCLlSLl FCLQZLQ
Ftrue: L Hfalse: L Fay=ao:LiULs

Command typing

The judgment pc - ¢ means that c is well-typed with the program-counter label pc. We
write - ¢ to mean L F c.

Fa:L' L'UpcCT(x)
pc = skip pcHx:=a

pctkc1 pek ey Fb: L pcUL'Fecp pcUL b co
pe k= cy;co pc = if b then c; else co

Fbo:L' pcUL' Fc
pc = while bdo ¢

Notice that the pc label increases inside if and while to account for the label on the
guard expression b.

4 Memory equivalence

We use a distinguished label L (“low”) to define what is visible to the low observer. It
is assumed that the low observer can see memory locations x where I'(2) T L. These
are the low variables.

We write My ~; M> to mean that memories M; and M, are indistinguishable to
the low observer. That is, they agree on all locations x visible to the low observer.

If a label L' is not visible—that is, L’ [Z L, we say that L’ is high. A variable with
such a label is a high variable.

5 Noninterference

We say that a program c satisfies noninterference [GM82] if equivalent initial memories
produce equivalent final memories:

My g Ma A (My,c) —" (M{,skip) A (Mo, c) —" (M3, skip) == M ~p M,

This is a termination-insensitive notion of noninterference, because it says nothing
about what happens if one of the two evaluations diverges.

6 Soundness

The security type system is sound if all well-typed programs satisfy noninterference:

e N My = My A (My,c) —* (Mq,skip) A (Ma,c) —* (M}, skip) = M ~, M,

7 Proving noninterference for W

Proving noninterference in a small-step setting seems to require augmenting the op-
erational semantics in some way. (This is not true of big-step (natural) semantics or
of denotational semantics.) The reason is that small-step evaluation does not preserve
enough information about the structure of the program being executed.

We want to reason about two different executions of a program c. To accomplish
this we will syntactically mark the parts of the program that are allowed to be different
in the two executions. We write [c] to indicate a command c that may be different. We
also write [n] and [¢] to indicate arithmetic and boolean values that may be different.
The result of evaluating an arithmetic expression is either a number n or a bracketed
number [n], and similarly with boolean expressions. The resulting augmented language
we will call [W].

The noninterference technique shown here combines ideas from work by Volpano,
Smith, and Irvine [VSI96], by Zdancewic and Myers [ZM02] and by Pottier and Si-
monet [PS03]. Like Zdancewic’s approach, it establishes an equivalence between two
parallel executions operating on different initial states. Like Pottier and Simonet’s
approach, it introduces a simple syntactic construct (brackets) to keep track of high
subexpressions.

7.1 Equivalence on memories

We augment memories to be allowed to map (high) variables to bracketed results. Then
two memory locations are equivalent if they contain corresponding values: either both
are the same integer or both are bracketed integers:

nAn [m] ~ [n2]

We have the corresponding rules for booleans too. Now, we can define another
equivalence relation M7 = M on augmented memories:

M, =~ My, <— VCBMl(ZL') ~ MQ(LL)

For any two equivalent standard memories M7 ~j M, there are clearly two aug-
mented memories M ~ M that agree with the standard memories everywhere except
for brackets. We simply put brackets around the values of all high variables. Con-
versely, for any two equivalent augmented memories where brackets are used only for
high variables, there are two equivalent standard memories.

Given a [W] memory M, let | M | represent its projection to an original memory by
removing all brackets. We write - M if the values of all high (and only high) variables
have brackets, and say that such a memory is well-formed. Then if M; ~ M, and
F M, and = Mos, the projections of these well-formed memories are low-equivalent:
[My] ~p [Mz].

7.2 Augmented syntax

We allow brackets around values and commands:

az=... | [n]
b= | [t]
ci= | [e]

7.3 Equivalence on commands

Two commands are equivalent if they are equal modulo bracketed commands:

a=a
skip =~ skip r=a~zx:=ad
QR ey beb g ~cd ca=d
c1;co Rl ch if b then c; else ¢y = if b’ then ¢ else ¢},
brb cx(
while b do ¢ ~ while ¢’ do ¢/ [e1] = [e2]

7.4 Augmented operational semantics

We extend the operational semantics to propagate brackets. Nothing interesting hap-
pens from the computational perspective with brackets. They are just a syntactic
marker.

Arithmetic

(M,a1) § [n1] (M,az) § na n=n1Sny
(M, [n]) I [n] (M, a1 @ az) | [n]

(Mya1) dny (M,az) |} [na] n=n1®&ny (M,a1) | [n1] (M,a2) | [na] n=mnsSny
(M, a1 ® az) | [n] (M, a1 @ az) | [n]

Booleans

Follows the same pattern as arithmetic.

Commands

(M,cy — (M,)
(M, [e]) — (M, [c]) (M, [skip]) — (M, skip)

(M,b) | [true] (M,b) || [false]
(M,if bthen c; else co) — (M, [c1]) (M, if bthen ¢, else co) — (M, [c2])

We also need to replace the original assignment rule to make sure that memories
stay well-formed when a low value is assigned to a high variable. A bracket is added
in this case.

(Mya)yn T(zx)ZL (M,a)n T(z)CL
(M,z :=a) — (M[z := [n]],skip) (M,z:=a) — (M[x := n], skip)

(M, a) § [n]

7.5 Static semantics

We augment the static semantics of the language to account for brackets as follows:

L'y L L'y L

-] L' [L

L'tc pcCL L'IZL
pe b+ [c]

These rules ensure that the type system treats bracketed expressions as “high”.

7.6 Noninterference in [W]

We can express the security enforced by the [W] type system as the following nonin-
terference condition:

Lemma 1 (Noninterference of [W])

FeANBEM AN FEMy;ANM ~ M
A (M, c) —* (M, skip)
A (Ma, c) —* (M3, skip)
= M| ~ M,

7.7 Completeness of [W]

To use Lemma 1 to prove noninterference for the original language W, we first need
to establish a correspondence between the two languages. Every new evaluation rule
corresponds to an evaluation rule of the original language, except with extra brackets.
Therefore, every step that is performed in the original language can also be performed
in the augmented language, and vice versa.

We need to know that any full evaluation of a program in the original language can
be simulated in the augmented language, perhaps with extra brackets. Given that c is a
[W] command, let us use the notation |c] to denote removal of all brackets from ¢ in

the obvious way, yielding a command from W. Using this notation, we can express the
completeness of [W] with respect to W:

Lemma 2 (Completeness of [W])
Fen({IM],|c]) —* (M skip) = IM" (M, c) —* (M" skip) A M' = | M"|

Note that the evaluation step on the left-hand side of the implication is a W step,
whereas the evaluation on the right-hand side is a [W] step.

This completeness theorem says nothing about divergent evaluations in the source
language. These evaluations don’t matter because we are proving termination-insensitive
noninterference.

Assuming that we have Lemma 2 (it is proved by induction on the number of steps
in the evaluation of (| M |, [c]), but the proof is currently left to the reader), we prove
noninterference for the original language (see Section 5) as follows.

7.8 Noninterference of W

We start by assuming the three premises of the noninterference condition:

My =, My (My,c) —* (Mj, skip) (M, c) —* (M5, skip) (1)

and our goal is to prove M ~, M}.
Because M7 ~;, Ms, we know from Section 7.1 that there exist two [W] memories
M3 and M, such that the following conditions all hold:

| M3] = M, | My] = My
F M; F My 2)
M3 r’T‘zM4

Because (My,c) —* (Mj,skip) and | M3]| = M, completeness tells us there
exists some M7 such that (Ms,c) —* (M, skip), and M] = |M/'|. Similarly,
there exists MY such that (My,c) —* (MY, skip), and M} = |M4|. Conditions
(2) allow us to use noninterference on [W] (Lemma 1), obtaining M{ ~ M}. And
therefore M| a2, M), proving the desired noninterference result for W.

Now it just remains to prove Lemmas 1 and 2. This is where the real work happens.

8 Proving noninterference for [W]
8.1 Some important lemmas

Lemma 3 Low arithmetic expressions always evaluate to ordinary integers (without
brackets):
FMAFa: L' NL'C L= 3n(M,a){n

Proof. By structural induction on a.
e Case a = n: trivial
e Case a = x: By cases on x being low or high.

— Case z is low (I'(z) C L):
M (x) = n for some n, because - M.
Therefore (M, a) |} n.

— Case x is high:
This contradicts L' C L.

e Casea = a1 +ao: FromtF a : L', weknow - a; : Ly and - ay : Ly where
L' =L ULs.

By the induction hypothesis, there exist ni,ns such that (M, a;) | nq and
<J\47 CL2> U ng.

Therefore (M, a) |} n where n = n; + no.

Lemma 4 Low boolean expressions always evaluate to ordinary truth values (without
brackets):
FMAFO:L'ANL CL= 3t.(M,b) |t

Proof. By structural induction on b, similarly to the proof of Lemma 3.

8.2 Subsumption

Lemma 5 (PC Subsumption) If a command can be typed under a given program
counter label pc, it can also be typed under a lower label pc’:

pckcApd Cpc = pc’ Fe

Proof. By rule induction on the typing derivation pc F c.
e case pc b skip: Trivial, since pc’ F skip for any pc’.

e case pc k= a:
From typing rule, have: - a : L' and ' C T'(x) and pc C T'(z). Since pc’ C pe,
we have pc’ C I'(x) too, so pc’ -z := a.

e case pc - cq;co:
From typing, have pc |- ¢ and pc |- cs.

From induction hypothesis, pc’ + ¢ and pc’ F co. Therefore we can derive
pc’ = ocy;ca.

8.3

case pc I if b then c; else co:

From typing, have - b : L' and pc U L' - ¢; and pc U L' F co.

Since pc’ U L' C pc U L, the induction hypothesis gives us pc’ LI L' = ¢; and
pc’ U L' I co. Therefore we can derive pc’ = if b then ¢, else c,.

case pc - while b do ¢’:

From typing, have - b : L' and pc U L' F (.

Since pc’ U L' E pe U L, the induction hypothesis gives us pc’ LI L' I ¢,

Therefore we can derive pc’ - while bdo ¢'.

Preservation

We need to know that [W] preserves typing during evaluation. This is also known as
subject reduction.

Lemma 6 (Preservation)

FMApckceAN{M,c)— (M Yy =+ M Apct

Proof. By rule induction on the derivation of (M, ¢) — (M’ ¢).

case (M, [c]) — (M[c]). (augmented rule)

From the evaluation rule, we have (M, c) — (M’,c’).

From the typing rule, there is some high L’ such that L' F ¢ and pc C L'.
We can assume the induction hypothesis, so L' - ¢’ and - M’.

Therefore we can derive pc b [¢/].

case (M, [skip]) — (M, skip).

This case is trivial because pc |- skip and we already have - M.

case (M, := a) — (M[x := n], skip).

We have pe b skip trivially, but also need to show - M|z := n]. The variable
x must be low for this evaluation rule to apply, so after changing its mapping in
M to an ordinary integer, the memory will still be well-formed.

case (M, z := a) — (M|x := [n]], skip). (augmented rule)

From the typing derivation, we know - a : L’ where L’ C T'(z).

If I'(x) is high, the memory M will still be well-formed after the mapping for =
is changed to a bracketed integer.

And T'(z) cannot be low. If it were, then L’ would be low too. But by the low
arithmetic lemma, a cannot evaluate to a bracketed integer.

case (M, skip; c;) — (M, c1).

We have the required pc - ¢; from pc - skip; ¢1, and of course = M still holds.

o case (M, cy;co) — (M, c}; ca).
From evaluation rule, (M, ¢1) — (M’ c}).
From typing rule, pc I ¢;.
By induction hypothesis, pc - ¢} and - M’.

Therefore we can also derive pc - ¢}; ¢c2 as required.

e cases (M, ifbthenc, elseco) — (M, 1), (M, ifbthency elseco) — (M, co).
From the evaluation rule, (M, b) |} true (respectively, (M, b) | false).
From the typing rule, we have = b : L' and pc U L' - ¢; and pc U L' F co.
From Lemma 5, pc I ¢ and pc - cs.
Therefore both branches preserve typing.

e cases (M, if b then c; else c;) — (M, [c1]) and (M, if b then c; else co) —
(M, [ca]).

These are the rules that apply when (M, b) |} [true] or (M, b) | [false] respec-
tively.

From the typing rule, we have - b : L' and pc U L’ - ¢; and pc U L' F co.
From Lemma 4, L’ must be high, so pc U L' is also high. Also, pc C pc U L'.
Therefore, pc b [c1] and pe F [c2], as required.

e case (M, while bdo ¢’y — (M, if b then (c; while b do ¢) else skip):
A typing derivation for the right-hand side must look like the following:

A B
B Fb: L' pcUL’UL ¢
A pcUL ¢ pc U L' - while bdo ¢
Fb: L pc U L'+ c; while bdo ¢ pc U L'+ skip

if b then ¢’; while b do ¢’ else skip
But we have derivations A and B by the typing rule for while b do ¢'.

Lemma 7 (High-step lemma) A step of a command typable with high pc results in an
equivalent memory.

pcZ LApckceA(M,c) — (M',cy= M=~ M

Proof. By rule induction on (M, ¢) — (M’).

e cases (M, [skip]) — (M, skip), (M, skip; ¢’y — (M, '), (M, ifbthenc; elsecy) —
(M,c), (M,if b then c3 else cs) — (M,c), (M,if b then c3 else cqy) —
(M, [c3]) and (M, if b then c3 else cy) — (M, [c4]), (M, while bdo ¢;) —
(M, if b then (cq; while b do ¢;) else skip):

Trivial, because M’ = M.

10

e case (M,z := a1) — (M[x := n], skip):
By the typing rule, pc C I'(z), so « is high (I'(x) [Z L). So this case cannot
happen.
e case (M,x :=a1) — (M|x := [n]], skip):
This case only happens when « is high, so clearly M ~ M|z := [n]].
o case (M, cy;co) — (M, c}; ca).
From the evaluation rule, (M, ¢1) — (M’, c}).
Therefore M ~ M’ by the induction hypothesis.
e case (M, [c1]) — (M, [c}]):
From the evaluation rule, (M, ¢;) — (M, ¢}).
From the typing rule, L' - ¢; where L’ is high.
Therefore, M =~ M’, by the induction hypothesis.

8.4 Simple expression equivalence lemmas

Lemma 8 (Arithmetic preserves equivalence)
a; ~ay AN My~ My A (My,a1) 4 a= 3o’ . (My,az) o’ Na~d
Lemma 9 (Boolean evaluation preserves equivalence)
by &by A My &~ Mo A (My,b1) |} b= 36" (Mo, b)) Y ' ANb==V

These two lemmas are proved in the same way. We show just the arithmetic one.

Proof. By rule induction on (M;,a1) |} a.
® case <M1, n1> U ni. Then as2 = N, and <M2, CL2> »U niy.
e case (M7, x) || n1. Then M;(z) = n1, so Ma(z) = ny, so (M, x) | nq.
e case (My,x) || [n1]. Then Ms(x) = [ng] for some ny, and (Ms, z) || [n2]. But
[na] & [na].
o case (My,a} +af) | a. Then as is ab + a§ where a} ~ a) and a ~ af. From
the evaluation rule, (M1, a}) |} a5 and (My,ay) |} af.
By the induction hypothesis, (Ma, a}) |} a} where a§ ~ a/, and (Ms,a3) | aff
"o M
where a5 ~ aj.
Consider cases on a% and af.
- case ay, = n} and a§ = nf. Then a; evaluates to their sum, but a} = nj
and a} = nfY, so as does too.
- case ay = [n}] and @ = nf, or a§ = n} and af = [nY], or a§ = [n}] and
a4 = [nY]. In all these cases, a = [n] where n = n} + nf, and so does a’.

e case (M, [n]) | [n]. From a; = ag, we know agy = [n/]. Then (Ms, aq) | [n/],
and [n] = [n/] as required.

11

8.5 Unwinding lemma

The noninterference theorem on [W] (Lemma 1) talks about an evaluation taking an
arbitrary number of steps. We prove it by induction on the number of steps taken on
the left side. We need an unwinding lemma [GM84] to show that equivalence and well-
formedness are preserved in each step. More precisely, for each step taken by one of
the two equivalent programs, either the other program can take some number of steps
to reach an equivalent state, or it diverges ((Mz, c2) 1) inside a bracket:

Lemma 10 (Unwinding)

"Ml/\ l_MQ/\ "Cl/\ |_CQ
ANM =~ My Aci~ca A <M1,Cl> — <M{7C/1>
—
(IML, b Mo, co) —* (M5, chY N M| = M} A) = c)
V ((Ma,co) ft A Je.ca =c])

Notice that we don’t include
FA A Fdy AN =M A F M,

in the consequent, even though we’ll need those to be able to string instances of the
unwinding lemma together. Fortunately, the Preservation lemma gives us these parts
of the invariant already.

Proof. By rule induction on (M7, ¢;) — (M7, c}).

o case (M, [c3]) — (M7, [c5]).
From ¢; & ¢z, we know ¢ = [c4]. And [c¢§] =~ [c4], sO c2 = [c}]. From
the evaluation rule, we know (M, c3) — (Mj,c4). From the typing rule,
we know L' = c3 for high L’. Therefore, from the high-step lemma, we have
M =~ M. Therefore we choose (M}, ch) = (Ma, ca) ~ (M], [c5]).

e case (M, [skip]) — (M, skip).
From c¢; = cg, we know ¢y = [c4]. If ¢y diverges, we are done with ¢ = ¢4.
Let us consider the case that co does not diverge. The only way for cz not to
diverge is for ¢4 to evaluate to skip, in which case we have (M, [c4]) —*
(M}, [skip]) — (M}, skip). By the high-step lemma (and by induction on the
number of evaluation steps, M) ~ M, ~ M. So we can choose ¢}, = skip.

e case (M, x := a1) — (M;[z := n], skip):
From ¢; ~ ¢o, we know c5 is x := as for some as where a1 ~ as.
From the evaluation rule we know (M, a;) | n.
By Lemma 8, we have (M, as) | n.
If My = Ms, then M; [z := n] ~ Ms[x :=n].

12

case (My,x := a1) — (M[z := [n]], skip):

This case is proved the same way as the previous one, using Lemma 8.

case (M, skip; c¢}) — (M, c}).

Command ¢y must also have form skip; ¢ where ¢} ~ c. So (Ma,ca) —
(Ms,), preserving equivalence on memories and commands as required.

case (M, c3;cq) — (M{,ch; cq). Command co must have form c¢s; cg where
c3 = c5 and ¢4 = cg. From the evaluation rule we have (M, c3) — (M7,).
By the induction hypothesis, we know from c3 ~ c¢5 that (Mo, c5) — (M}, ¢k)
where M; ~ M}. From the evaluation rule, (Mo, c5;c6) — (M}, ck; cs). So
the case is satisfied with ¢}, = ¢f; cs.

cases (M, if b then c; else cy) — (M7, c3) and (M7, if b then c3 else c4) —
<M 1,C4 > .
From the equivalence ¢; ~ co, we know ¢, has the form if b’ then cs else cg where

b~ b, c3 ~ c5,and ¢q = cg. Since b and b’ can’t be bracketed, they must be the
same.

We know that either (M,b) | ¢ (where ¢ is either true or false), or (My,b) ||
[t]. Actually, we can’t get a bracketed value as a result because then we’d use
a different evaluation rule for if (the next one). But if (My,b) | ¢, then by
Lemma 9, ' must evaluate to the same value t. Therefore ¢; and ¢y take the
same branch. From c¢3 = ¢5 and ¢4 ~ ¢4, we know that in either case ¢ ~ ¢}.

e cases (M, if bthen c; else cy) — (M7, [c3]) and (M7, if b then c; else ¢y) —
(M, [ca]).
This rule is used when (M7,b) |} [t]. As in the previous case, we know cy has
the form if b then c5 else c¢g where c3 ~ c5, and ¢4 ~ cg. By Lemma 9, we
know that (Ms,b) |} [t']. Depending on t', either (Ms, co) — (My, [c5]) or
(Ms, ca) — (M, [cg]). That is, ¢ is either [c3] or [c4], and ¢ is either [c5] or
[c]- In any case we have ¢} = c.

e case (M, while b do c3) — (M, if b then (c3; while b do c3) else skip):

We have co = (Mo, whilebdoc,) where ¢3 =~ ¢4. Therefore ¢, = ifbthen(c4; whilebdoc,)elseskip,
and M}, = My. Clearly ¢} = c},.

8.6 Acknowledgments

Aslan Askarov, Danfeng Zhang, and Eric Tanter gave helpful feedback and caught
some bugs.

References

[GM82] Joseph A. Goguen and Jose Meseguer. Security policies and security models.
In Proc. IEEE Symposium on Security and Privacy, pages 11-20, April 1982.

13

[GM84] Joseph A. Goguen and Jose Meseguer. Unwinding and inference control. In
Proc. IEEE Symposium on Security and Privacy, pages 75-86, April 1984.

[PSO3] Frangois Pottier and Vincent Simonet. Information flow inference for ML.

ACM Transactions on Programming Languages and Systems, 25(1), January
2003.

[VSI96] Dennis Volpano, Geoffrey Smith, and Cynthia Irvine. A sound type system
for secure flow analysis. Journal of Computer Security, 4(3):167-187, 1996.

[Win93] Glynn Winskel. The Formal Semantics of Programming Languages. MIT
Press, 3rd edition, 1993.

[ZMO02] Steve Zdancewic and Andrew C. Myers. Secure information flow via linear
continuations. Higher Order and Symbolic Computation, 15(2-3):209-234,
September 2002.

14

