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Abstract. One major goal of text mining is to provide automatic meth-
ods to help humans grasp the key ideas in ever-increasing text corpora.
To this effect, we propose a statistically well-founded method for identi-
fying the original ideas that a document contributes to a corpus, focusing
on self-referential diachronic corpora such as research publications, blogs,
email, and news articles. Our statistical model of passage impact defines
(interesting) original content through a combination of impact and nov-
elty, and the model is used to identify each document’s most original
passages. Unlike heuristic approaches, the statistical model is extensi-
ble and open to analysis. We evaluate the approach both on synthetic
data and on real data in the domains of research publications and news,
showing that the passage impact model outperforms a heuristic baseline
method.

1 Introduction

With the rapid proliferation of large text corpora, it is especially relevant to
provide automatic methods to support users in understanding global aspects of
a corpus without requiring them to read it in full. In diachronic corpora that
grow over time, one such global aspect is the dependency structure between ideas
and documents throughout the corpus. In particular, what is the original con-
tribution that a given document makes, and how does this idea further “flow”
through the corpus? In this paper, we focus on the first half of this question
and develop methods that automatically identify the original ideas that a doc-
ument contributes. Our methods leverage the diachronic nature of many text
corpora, where ideas originate in some documents and get discussed and refined
in later documents. Such corpora include research publications, email, news arti-
cles, Wikipedia content, discussion boards, and blogs. Useful applications include
the visualization of corpora, the detection of important developments in news
corpora, or the attribution of ideas in blogs or email discussions.

When identifying the original ideas expressed in a document, we are most
interested in ideas that ultimately had impact. Anybody can write some spam
on a discussion board, which would likely be novel to the discussion (at least the
first time), but not particularly interesting. In addition to novelty, measuring
the impact of an idea lets us focus on those ideas that are important, or that
at least are interesting to a large number of people. Therefore, our operational
definition of an original contribution combines both novelty and impact.



Unlike methods that rely on explicit citations that must be localizable in
each document [1], our methods require only the text of the documents. This
makes them more broadly applicable than citation-based measures (e.g., for
email, news). Furthermore, unlike novelty detection methods [2] (e.g., based
on TFIDF-style measures), our methods combine novelty with impact, which
provides a way of measuring the importance of novel ideas. The originality-
detection methods we propose are derived from a probabilistic language model
of diachronic corpora – called the Passage Impact Model (PIM), which makes
them theoretically well-founded and more extensible than heuristic approaches.
The method is evaluated on a corpus of Slashdot discussions, as well as through
a blind experiment with human judges on a collection of NIPS research articles.
In both experiments, the language modeling approach was found to outperform
a heuristic that focuses on novelty detection alone.

2 Related Work

The task of succinctly describing the original contribution of a document relates
to several existing research areas, including document summarization, topic de-
tection, topic modeling, and language modeling.

The largest body of related work is in document summarization (see e.g. [3]).
Document summarization methods provide the user with a summary of the entire
document, including both original and existing ideas, without explicitly making
a distinction. The difference between summarization and originality detection is
most apparent for documents that do not necessarily contain original content
(e.g., textbooks, review articles). While such documents have a summary, their
original contribution can be quite different or even non-existent.

Another area of related work lies in novelty detection for Topic Detection
and Tracking [4, 5] in news streams. There, the task is to identify new topics
and events as they appear in the news. One major difference is that the Passage
Impact Model segments the document to identify a single passage that best
describes that document’s original contribution. Thus the inference method can
actually find a text description within the document, instead of just marking
that the document contains a novel topic. A second difference is that the Passage
Impact Model combines novelty with impact, focusing on ideas that not only are
novel but also affect the rest of the corpus. The TREC Novelty track [2] solves
a different problem, combining novelty and relevance, not novelty and impact.

One previous paper has tackled the problem of making “impact-based sum-
maries” [1]. Their method is based on citation contexts for explicit citations to
a document d. The task is to select the sentence s in document d that best
describes the contribution of d that had impact in these citation contexts. That
work followed a KL-divergence-based information retrieval framework where the
document d stands for the corpus, the sentences s stand for the documents to
be retrieved, and the citation context is descriptive of the “query.” The Passage
Impact Model is quite different in model and inference, since it does not require
citations. Instead, our method is based on an extensible generative and unsu-



pervised language-modeling framework. We start from a generative model of the
corpus and derive an inference method to identify the most densely-concentrated
original contribution in the document d. We do not need to use a citation context,
as the method is completely text-based.

On a higher level, topic models and other language models also provide gen-
erative models of corpora. In topic models, however, the focus is on discovering
underlying topics, without any explicit notion of originality or impact. Typi-
cally, topics are inferred by fitting graphical models with topics as the latent
variables. Latent Dirichlet Allocation (LDA) [6, 7] and its extensions [8, 9] are
the most well-known, but there is much other work in topic modeling [10–20]. In
this sense, topic models describe the relationship between topics and documents,
but not the relationships between individual documents. Our Passage Impact
Model directly models relationships between documents via a copy process. In
this sense it builds on the models in [21, 15], extending them to recognizing doc-
ument substructure. We use simple unigram language models in the PIM, but
one could also use more complex language models [22, 10, 6, 23–26].

3 Methods

We take a language modeling approach and define a generative model for di-
achronic corpora. An author writes a new document using a mixture of novel
ideas and ideas “copied” from earlier documents. An idea has impact if it is
copied (i.e., discussed, elaborated on) by future documents. This picture is one
of idea flows, originating in documents with impact and “flowing” to documents
based on idea development. We directly model idea flows between documents,
without an extra level of the topic as in topic models [6]. Identifying the original
contribution of a document means separating novel ideas from old ideas, and
simultaneously assessing impact. We assume that documents generally contain
a key paragraph or sentence(s) that succinctly describe the new idea, and we
aim to identify this piece of original text. The following gives more detail on our
probabilistic model and inference method.

3.1 Passage Impact Model

We propose a generative model of a diachronic corpus that extends the model in
[21] with respect to modeling originality. We model a document D(i) containing
ni words as a vector of ni random variables W (i) = (W (i)

1 ...W
(i)
ni )′, one per

word. Considering the process by which authors write documents, the text can
be split into several types: original content that will have impact on following
documents, novel content that will not have impact, and content “copied” from
already-existing ideas in the corpus. The location of the original content in D(i)

is denoted by Z(i), where Z(i) ⊆ {1...ni}. More concretely, the random variables
W (i) are partitioned into two sets: Z(i) ⊆ {1...ni} for the indices of the words
of D(i) that are original and have impact, while Z̄(i) = {1...ni} − Z(i) contains



the rest of D(i) (i.e., the copied content and the novel content without impact).
With these definitions, the document is described by the tuple

D(i) = (W (i), Z(i)) (1)

and we will now define a probabilistic model of a document P (D(i)|D(1)...D(i−1)).
Each document D(i) can draw on the ideas already expressed in the existing
documents D(1)...D(i−1) in the corpus. The probability of an entire corpus C
consisting of documents D(1)...D(n), can be decomposed as

P (C) =
n∏

i=1

P (D(i)|D(1)...D(i−1)). (2)

We decompose the probability for a single document D(i) into

P (D(i)|D(1)...D(i−1)) = P (W (i), Z(i)|D(1)...D(i−1))
= P (W (i)|Z(i), D(1)...D(i−1))P (Z(i))

since the document text W (i) depends on the previous documents, but the au-
thor’s selection of placement of original content is independent of previous doc-
uments. Prior information about the placement of Z(i) in the document can be
encoded in P (Z(i)). Furthermore, in the inference described below, the quan-
tity P (Z(i)) can be used to encode constraints on the form of original content
summary that is desirable (e.g., a single sentence or a single paragraph).

Words in the original portion Z(i) are generated from a unigram language
model with word probabilities θ(i). The rest of the document (i.e. the words
indexed by Z̄(i)) comes from a mixture of existing ideas and text that is novel
but without impact. That is, the words indexed by Z̄(i) are drawn from a mix-
ture of a novel unigram model θ̄(i) (new but without impact) and words copied
from the original sections of prior documents. Words are drawn uniformly and
independently in this copy process so that it can also be described by a unigram
model with parameters θ̂(k) for each prior document D(k). The document-specific
mixing weights π(i) are (π(i)

n , π
(i)
k ) for θ̄(i) and θ̂(k), respectively.

With the assumption that text is generated from these unigram multinomial
language models, the generative model of the text given Z(i) and the existing
corpus at time i is

P (W (i)|Z(i), D(1)...D(i−1)) =
∏

j∈z(i)

(
θ
(i)

w
(i)
j

) ∏
j∈z̄(i)

(
π(i)

n θ̄
(i)

w
(i)
j

+
i−1∑
k=1

π
(i)
k θ̂

(k)

w
(i)
j

)
.

Figure 1 illustrates the generative process at document d(i), showing how d(i)

copies content from the original part Z(k) of earlier documents d(k) and showing
how terms indexed by Z(i) are copied by later documents d(l). We summarize
this generative process of a diachronic corpus in the Passage Impact Model.
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Fig. 1. The generative process for a corpus. Document d(i) is the current document,
while d(k) precede d(i) in time and d(l) follow d(i). The shaded boxes are original content
Z(·), while the rest of the documents form Z̄(·). The arrows depict the copy process.

Model 1 (Passage Impact Model)
A corpus C = (D(1)...D(n)) of temporally-sorted documents D(i) =

(W (i), Z(i)), each having parameters (θ(i), θ̄(i), π(i)), has probability P (C) =∏n
i=1 P (D(i)|D(1)...D(i−1)) where

P (D(i)|D(1)...D(i−1)) =
∏

j∈z(i)

(
θ
(i)

w
(i)
j

) ∏
j∈z̄(i)

(
π(i)

n θ̄
(i)

w
(i)
j

+
i−1∑
k=1

π
(i)
k θ̂

(k)

w
(i)
j

)
P (Z(i))

and where θ̂
(k)
w is the probability of uniformly drawing word w from the words in

the original section z(k) of document D(k). Note that π
(i)
n +

∑
k

π
(i)
k = 1,

∑
j

θ
(i)
j =

1, and
∑
j

θ̄
(i)
j = 1.

3.2 Inference

Using the Passage Impact Model, we are primarily interested in inferring the
subset Z(i) of words in D(i) where the original contribution is most succinctly
contained. The only observed quantity is the text w(1)...w(n) of all documents.
We use maximum-likelihood inference based on Model 1 for inferring Z(1)...Z(n)

by maximizing P (D(1)...D(n)) given w(1)...w(n) w.r.t. Z(i), θ(i), θ̄(i), and π(i).
Applying Bayes rule and independence assumptions involving the placement of
original content Z(·) in different documents D(i)...D(n), the inferred original
content Z(i)∗ is given by the following:

(Z(1)∗...Z(n)∗) = argmax
Z(1)...Z(n)

max
(θ,θ̄,π)

P (w(1)...w(n)|Z(1)...Z(n))P (Z(1)...Z(n))

= argmax
Z(1)...Z(n)

max
(θ,θ̄,π)

P (w(1)...w(n)|Z(1)...Z(n))P (Z(1))...P (Z(n))

Note that we do not explicitly include the parameters θ, θ̄, and π in the no-
tation for improved readability, since their dependence is straightforward. To



avoid the intractable simultaneous maximization over all (Z(i)...Z(n)), we in-
troduce some simplifying assumptions that allow independent optimization for
each Z(i). First, we assume that for all prior documents d(1)...d(i−1), the copy
probabilities θ̂(1)...θ̂(i−1) can be approximately estimated from the full set of
words w(1)...w(i−1), respectively, not merely the words indexed by the original
markers z(1)...z(i−1). In practice, this assumption can be expected to have only
minor impact1, and it can be removed if z(1)...z(i−1) are already known. With
this assumption, we have that for any i

(Z(i)∗...Z(n)∗) = argmax
Z(i)...Z(n)

max
Z(1)...Z(i−1)

max
(θ,θ̄,π)

P (w(1)...w(n)|Z(1)...Z(n))P (Z(1))...P (Z(n))

= argmax
Z(i)...Z(n)

max
(θ,θ̄,π)

P (w(i)...w(n)|Z(i)...Z(n), θ̂(1)...θ̂(i−1))P (Z(i))...P (Z(n))

Second, we introduce a simplified model for the future documents D(i+1)...D(n)

so that one can maximize over Z(i) independently. When inferring Z(i), model-
ing exactly how future documents D(l), l > i, had impact on each other is of
minor importance, so that we do not model their Z(l). Instead, we assume that
the original and novel content of future documents comes from a multinomial
mixture, which can be captured by a single multinomial language model θ̄(l).
Thus, each D(l) depends only on the documents D(1)...D(i), and

P (w(i+1)...w(n)|Z(i)...Z(n), θ̂(1)...θ̂(i−1)) =
n∏

l=i+1

P (w(l)|Z(i), w(i), θ̂(1)...θ̂(i−1))

Putting all of these assumptions together, we can rewrite the objective func-
tion as the likelihood of the documents in the corpus starting from D(i), given
all the documents that precede D(i), which is P (D(i)...D(n)|D(1)...D(i−1)). We
express this likelihood using the parameters (θ(i), θ̄(i), π(i)) as follows:

Z(i)∗ =argmax
Z(i)

max
(θ,θ̄,π)

P (Z(i))P (w(i)|Z(i), θ̂(1)...θ̂(i−1))
n∏

l=i+1

P (w(l)|Z(i), w(i), θ̂(1)...θ̂(i−1))

= argmax
Z(i)

max
(θ,θ̄,π)

P (Z(i))
∏

j∈z(i)

(
θ
(i)

w
(i)
j

) ∏
j∈z̄(i)

(
π(i)

n θ̄
(i)

w
(i)
j

+
i−1∑
k=1

π
(i)
k θ̂

(k)

w
(i)
j

)
n∏

l=i+1

nl∏
j=1

(
π(l)

n θ̄
(l)

w
(l)
j

+
i∑

k=1

π
(l)
k θ̂

(k)

w
(l)
j

) (3)

Note that the various π(.) and θ̄(.), as well as θ(i), are linearly constrained to
form proper probability distributions, and that θ̂(i) can be computed in closed
1 Since each document can be a mixture of original content and previous content, when

estimating θ̂(·) from the entire document, it is equal to the true θ̂(·), mixed with some
previous content that would have come from the θ̂(·) of even earlier documents in
the corpus. This assumption means that the θ̂(·) also could include some content
from θ̄(i). However, if this portion’s mixture component is relatively small, the θ̂(i)

will still be quite faithful to the Passage Impact Model’s definition.



form for a given z(i). For a fixed z(i), the above optimization problem is convex
and has no local optima. The prior P (Z(i)) can be used to enforce a particular
form of original content description (e.g., that the algorithm has to select a whole
paragraph or a single sentence).

3.3 Implementation Details

When solving the optimization problem, the method can efficiently find the
maximum likelihood if given a specific z(i). In the following, we therefore give
non-zero prior P (Z(i)) only to a fairly small number of z(i) that can be enumer-
ated explicitly. This allows us to find the globally optimal solution of Eq. 3. In
particular, we break documents into consecutive passages of equal length, which
we denote s1...sK . We set P (Z(i) = sk) to be uniform for each k = 1...K, with all
other P (z(i)) = 0. One could also define a non-uniform prior over the candidate
passages z(i) to encode additional knowledge (e.g., bias toward the beginning or
end of the document). With this particular assumption on z(i), the entire likeli-
hood maximization can now be reduced to a sequence of convex problems, one
per sk. The solution to this sequence of optimizations is the global maximum
likelihood across the passages. We use the general software optimization tool
MOSEK to solve these convex optimizations [27].

While the individual problems are convex, for efficiency reasons, we have
to consider the number of parameters in the Passage Impact Model. Therefore,
when performing inference on document d(i), instead of using the full set of pre-
vious documents {d(1)...d(i−1)}, we choose the set of kP nearest neighbors from
these documents according to cosine similarity. The document indices for these
kP documents are given in the set P. Besides d(i), the optimization also uses
the likelihood of generating the documents d(i+1)...d(n). Each of these “future”
documents d(l) has its own set of mixing weights and set of previous documents,
again chosen from the documents {d(1)...d(i−1)} nearest to d(l) by cosine sim-
ilarity. While we do not use the following strategies for improving efficiency,
one could further reduce the size of the optimization problem. For example, it
is possible to consider a Passage Aggregated Impact Model, wherein all future
text is “lumped” together into one single “document” for inference. Then, there
would only be a single set of future document parameters. Equivalently, we could
constrain all future documents to have the same mixing weights and choose the
set of previous neighbors as those most similar to the concatenation of all future
documents. There is a tradeoff between using more information in more future
documents vs. using more parameters for a specific set of interesting previous
documents.

4 Experiments

We conducted experiments to test the Passage Impact Model on both synthetic
and real data from research publications and news articles.



4.1 Experiment 1: Synthetic Data

We use synthetic data to explore the range of problems and parameters under
which the methods work effectively and robustly. The synthetic data is generated
with underlying language models from documents in the full-text proceedings of
the Neural Information Processing Systems (NIPS) conference [28] between 1987-
2000. NIPS has 1955 documents with text obtained by OCR, resulting in 74731
unique words (multi-character alphabetic strings), except without stopwords.

To generate a document d(i), we selected a NIPS document d randomly and
set the original language model θ(i) for d(i) to be the distribution of words in
d. The words indexed in Z(i) are then generated according to θ(i). For Z̄(i), we
set the novel language models θ̄(i) and each θ̄(l) similarly, with each document
selected for θ̄(l) following NIPS document d in time. The mixing weights π

(i)
k are

selected uniformly at random, except for explicitly exploring π
(l)
i , l > i, (how

much future documents d(l) copy from d(i)) and π
(i)
n (how much novel but not

original content d(i) has) according to the values they might take in practice.
The structure of Z(i) and Z̄(i) takes the form of K = 20 passages with L words

per passage. In the simplest case, Z(i) marks exactly one passage as original. In
addition, we test scenarios where the original content is more diffused through
the document, which poses a challenge in inference. One crucial assumption of
our method is that the prior P (Z(i)) used during inference matches the data-
generating process. However, the inference procedure as implemented above aims
to find a single passage containing all the original content, while the true Z(i)

might diffuse it over other passages. To test the robustness of inference w.r.t.
the degree of diffusion, we include a fraction δ of original content in the (mostly)
non-original passages in data generation, but not during inference.

Evaluation on the synthetic data uses the percentage of (mostly) non-original
passages with a greater likelihood than the original passage likelihood. Random
performance would be that half of the non-original passages are misranked, re-
sulting in a score of 50%. The error values show one standard error.

Impact Is Critical In the first experiment, we explore the difference between
pure novelty detection vs. the additional use of impact when identifying Z(i).
When not using any future documents, our method might still be able to identify
Z(i) merely by fitting the mixture model and detecting that Z(i) cannot be ex-
pressed as a mixture of previous documents. In this setting, our method becomes
a pure novelty detection method. However, Table 1 shows that the signal from
novelty alone is much weaker than novelty combined with impact. While the per-
formance is better than random when no future documents are used (kF = 0),
detection accuracy substantially improves when future documents and impact
are considered by the method. The table shows that two future documents that
copy 5% of their content from d(i) already provide a robust signal.

More Information in Longer Passages We would like to determine the size
of the original passage for which the Passage Impact Model can perform well.



Table 1. Percentage of misranked non-original passages. Passage length L = 100,
δ = 0.2, π

(i)
n = 0.5, π

(l)
i = 0.05, and π

(l)
n = 0.6. 10 future documents d(l) were generated,

and inference used the kF documents d(l) most (cosine) similar to d(i).

kF % Err ± One Std Err

0 37.89 ± 3.23

1 2.95 ± 0.78

2 0.26 ± 0.16

5 0.00 ± 0.00

10 0.16 ± 0.16

Table 2. Percentage of misranked non-original passages with kF = 2 future documents.
The data was generated with δ = 0.2, π

(i)
n = 0.5, π

(l)
i = 0.05, and π

(l)
n = 0.6.

Length % Err ± One Std Err

25 8.16 ± 1.61

50 2.26 ± 0.65

100 1.00 ± 0.99

400 2.26 ± 0.74

Users may be interested in descriptions anywhere from one or more sentences
to paragraphs. Table 2 shows that, in general, when performing inference on
longer passages, the method is able to perform more accurately. The method
performs very well for passages as short as 50 words. However, for very short
passages of length 25 words, there is some drop in accuracy. Longer passages –
and therefore longer documents – provide more observations, and it is less likely
that the method will overfit to a few random draws.

Diffusiveness of Original Content in d(i) The inference method searches for
a single passage that contains the original contribution, but realistic documents
will have original content spread throughout all passages. How much original
content in other passages can our inference method tolerate? Table 3 shows
that the method is very robust towards small to moderate diffusion. Even as δ
increases to 0.3 (i.e. 30% of each of the other passages is original content), the
method is still quite accurate. After that, performance degrades rather quickly,
at least when only two future documents are used.

How Much Copying Is Necessary? As shown above, the Passage Impact
Model relies on future documents copying the ideas expressed in the original
contribution of d(i). How much must each future document copy to provide a
sufficient signal? Table 4 shows that the method performs with minimal errors
for many values of π

(l)
i , even in the situation where future documents copy only

5% of their content (i.e. 100 words) from d(i). At lower values for copying, the
percentage of correctly ranked passages smoothly decreases. As π

(l)
i approaches



Table 3. Percentage of misranked non-original passages. kF = 2 future documents,
passages length L = 100 words, π

(i)
n = 0.5, π

(l)
i = 0.05, and π

(l)
n = 0.6.

δ % Err ± One Std Err

0.1 0.00 ± 0.00

0.2 0.00 ± 0.00

0.3 4.74 ± 1.21

0.4 24.89 ± 2.80

0.5 45.26 ± 3.38

Table 4. Percentage of misranked non-original passages. kF = 2 future documents,
passage length L = 100 words, δ = 0.2, π

(i)
n = 0.5, and π

(l)
n = 0.6.

π
(l)
i % Err ± One Std Err

0.005 34.37 ± 3.16

0.01 28.58 ± 2.97

0.02 9.16 ± 1.41

0.05 0.11 ± 0.07

0.1 0.00 ± 0.00

0.2 0.00 ± 0.00

0, the method becomes essentially equivalent to a novelty detection method that
does not using any future documents.

4.2 Experiment 2: Slashdot

Besides synthetic data, we also evaluate on the real world dataset of news articles
linked to on Slashdot under the Games topic. When users post an entry, they
often link to some article on the Web, and sometimes quote directly from it. Then
other users read and respond to these postings in a discussion board format. We
collect linked-to web documents and discussions from the Games topic where
the original poster directly quotes from a linked-to document. We regard the
sentences in the human-selected direct quotations as the label for the original
content z(i) of the web document d(i).

We collected a set of 61 documents from the Games topic of Slashdot. These
are the entries posted from August 2008 through February 2009, inclusive, where
the initial entry quotes a portion of the referenced article. The documents are
the referenced articles. In addition, we collect the first page of the user discussion
on this topic, as selected by Slashdot. Figure 2 shows a screenshot of Slashdot
that depicts the data we collected.

Experiment Setup To do inference on Slashdot data, we sort the fulltext,
linked-to news articles by their posting date. For each article, we use the Passage
Impact Method to rank all the sentences in the linked-to web content d(i) by



An original post including a quotation Part of the discussion

Fig. 2. Left: A post that quotes from article d(i) by the link “the way video games han-
dle simulated emotions.” The label for the original content z(i) in d(i) is the quotation
text. Right: Part of the discussion to be used as the future document d(l).

their likelihood under the model. The previous documents d(1)...d(i−1) in this
setting are the web content that have been linked to in earlier discussions. The
future content d(i+1) in this experiment is the user discussion on this posting,
except that any direct quotations from the fulltext article have been removed.
The user discussion may not contain all the comments, but only those that have
been voted up enough to be selected to appear with the posting. We collected
seven months (August 2008 to February 2009, inclusive) of articles that satisfy
these criteria from the Games subtopic of Slashdot, which netted a corpus of 61
web documents with their associated discussions.

Evaluation Method For evaluation, we rank the sentences in the fulltext ar-
ticle in decreasing order of likelihood. The user quotations typically contain no
more than a handful of sentences, but often more than one. Thus, this imple-
mentation differs from the model where we assume that there is a single original
contribution marked in the passage Z(i). As a baseline, we compare against a
simple heuristic that identifies novelty. In particular, we rank the sentences by
a TFIDF score given by the sum of each sentence term’s IDF value. Then, since
we have the labels of the true original sentences, we evaluate using the standard
metrics of precision and recall at certain points in the ranking. Precision at a
point in a ranking is defined to be the number of original sentences at that posi-
tion in the ranking divided by the total number of sentences up to that point. For
a point near the top of the ranking, precision measures whether the sentences
that the method most confidently predicts as original are indeed original. Thus
we report results for Prec@2. Recall at a point in the ranking is defined to be
the number of original sentences at that position in the ranking divided by the
total number of original sentences in the document. Recall measures how well
the method can find all the original content in the document. Since each labeled
quotation typically contains several sentences, we report results for Rec@10.



Table 5. Prec@2 and Rec@10 are based on the predicted ranking of sentences by
likelihood and TFIDF sum. Original sentences are the ones quoted word-for-word from
the article. Results are for π

(i)
n = 0.2 and π

(l)
n = 0.001.

Prec@2 ± One Std Err Rec@10 ± One Std Err

PIM 22.13 ± 3.38 36.09 ± 3.61

TFIDF 9.84 ± 3.03 25.01 ± 4.04

RAND 10.63 ± 1.10 23.92 ± 2.27

Table 6. Comparing the PIM with future documents, and PIM as a novelty detection
method (without future documents). Results are for π

(i)
n = 0.2 and π

(l)
n = 0.001.

Prec@2 ± One Std Err Rec@10 ± One Std Err

PIM Impact 22.13 ± 3.38 36.09 ± 3.61

PIM Novelty 9.84 ± 3.03 28.04 ± 4.24

Results The Prec@2 results in Table 5 show that the Passage Impact Model
outperforms the TFIDF heuristic baseline for predicting the human-selected sen-
tences at the very top of the ranking. For the task of finding a description con-
sisting of a few good sentences that succinctly describe the original content of a
news article, the Passage Impact Model is better than the baseline. The PIM also
significantly outperforms the baseline when trying to find most of the original
content, as measured by Rec@10.

Importance of Impact Component Similar to the experiment with synthetic
data, the use of impact substantially improves the performance over pure novelty
detection. Table 6 compares the results when using the discussion for detecting
impact with the results when no future documents are used. Using the discussion
significantly improves the precision of the method.

Robustness with respect to amount of novel content in d(i) During
inference, the method needs to assume a mixture weight for the novel content in
the non-original text Z̄(i). How sensitive is the method to the selection of this
parameter? Table 7 shows that the method is robust and provides good results
for a wide range of values for π

(i)
n .

Minor Effect of Novel Language Model in Future Documents Similarly,
since Slashdot discussions are somewhat notorious for getting off topic at times,
we evaluated whether changing the amount of novel content in the “future doc-
ument,” i.e., the discussion makes a difference. As it turns out, Table 8 shows
that for a wide range of novel content mixing weights π

(l)
n , the method is quite

robust. The model is able to focus on the portions that the discussion derives
from the underlying linked article.



Table 7. Prec@2 and Rec@10 for various amounts of assumed novel content π
(i)
n in

d(i). Sentences are marked as original if they appear word-for-word as in the linked
article. Results are for π

(l)
n = 0.001.

π
(i)
n Prec@2 ± One Std Err Rec@10 ± One Std Err

0.01 18.85 ± 3.10 35.51 ± 3.55

0.05 20.49 ± 3.15 36.03 ± 3.57

0.2 22.13 ± 3.38 36.09 ± 3.61

0.8 22.95 ± 3.39 36.45 ± 3.63

0.9 22.95 ± 3.39 36.45 ± 3.63

Table 8. Prec@2 and Rec@10 for various mixing weights π
(l)
n for the noise model in

fitting future documents. Sentences are marked as original if they appear word-for-word
as in the linked article. The results are reported for π

(i)
n = 0.2.

π
(l)
n Prec@2 ± One Std Err Rec@10 ± One Std Err

0.0001 20.49 ± 3.15 36.77 ± 3.58

0.001 22.13 ± 3.38 36.09 ± 3.61

0.01 16.39 ± 3.42 34.55 ± 3.73

0.1 18.03 ± 3.29 30.34 ± 3.47

0.5 20.49 ± 3.73 31.04 ± 3.47

4.3 Experiment 3: Evaluation based on Human Judgments

While the Slashdot data provided a reasonable mechanism for inferring ground-
truth labels, the most direct evaluation is by explicit human judgment. There-
fore, we conducted an experiment with human judges to evaluate the Passage
Impact Model on a corpus containing all 1955 papers from the NIPS conference
[28] between 1987-2000. In a blind experiment, we asked judges to compare pas-
sages extracted by the PIM to those extracted by the TFIDF heuristic regarding
how well they summarize the original contribution of a NIPS paper.

Experiment Setup Since breaking documents into paragraphs is non-trivial,
especially when they are OCR-ed and have many math equations, we arbitrarily
defined passages as consecutive blocks of text of length L = 100 (non-stopword)
words. On average, there are 14 passages per document.

For inference using the Passage Impact Model, we constrained the novel
θ̄(i) and original θ(i) language models to be equal because research publications
typically discuss original contributions at length. Ideally, the identified passage
should list the paper’s contributions or conclusions. (Although the abstract has
original content, it mostly focuses on placing the paper with the context of
existing ideas.) The future document novelty mixing weight of π

(l)
n = 0.01 is

small to force the model to “explain” the content of future documents d(l) by
identifying copied ideas. For efficiency, we used kF = 5 future documents. We



compare against the TFIDF heuristic baseline. Each paper’s passages predicted
by the PIM and the baseline were highlighted, and three judges selected which
passage better summarized the paper’s original contribution. The annotators are
machine learning graduate students familiar with the corpus and do not include
the authors of this paper.

Since the judgment process is time-consuming, we selected a subset of NIPS
publications for evaluation. We ranked all NIPS publications by their number of
intra-corpus citations and selected the top 50 most-cited documents. The first
publication is “Optimal Brain Damage” by Le Cun, Denker, and Solla, with 27
citations. The entire set of 50 documents includes documents down to those with
only 5 intra-1987-to-2000 NIPS citations. The PIM and the baseline selected the
same passage on two documents, so we use the remaining 48 for evaluation.

Results On these 48 documents, the human judges preferred the Passage Im-
pact Method over the baseline 58.33% of the time, with one standard error of
3.54%. Thus the judges significantly prefer the PIM over the baseline. To an-
alyze the results more closely, we separated the 48 evaluation documents into
two sets. On 20 documents, all three annotators (independently) agreed on a
single passage. For these, they preferred the PIM 70% of the time. On the other
28 documents, two annotators preferred one passage, while the third annotator
preferred the other passage. Here, the preferences for PIM and baseline were ex-
actly 50%. This suggests that sometimes identifying a passage that summarizes
the original contribution is quite difficult. When this is not the case, however,
the PIM outperforms the baseline quite substantially with 70% preference.

5 Discussion and Future Work

While the Passage Impact Model provides a generative model of diachronic cor-
pora and the relationships between individual documents, the model is still quite
simple. For example, it is based on unigram models of text production. In model-
ing the probability of W (i), one could instead use a more sophisticated sequence
model, or at least n-gram language models. Such information may help to iden-
tify coherent original ideas. Another limitation is that the model is constrained
to evaluate only a small number of candidate Z(i) for efficiency reasons. Devel-
oping pruning criteria is a promising direction for substantially increasing the
scope of Z(i) in hopes of finding better descriptions of original contributions.

Other information available for some corpora could be integrated into the
model as well. For example, if citation information is available, it could provide
additional constraints on the parameters during inference. Citations could be
used as priors for mixing weights, modeling that documents copy primarily from
those documents they cite. This could improve the accuracy of the model, and
it could improve efficiency of the optimization since many mixing weights could
be fixed at zero.

A more general direction for further work lies in the integration of originality
detection with models for idea flow. The goal is to have a unified probabilistic



model that identifies the dependency structure of the corpus, with ideas origi-
nating in some documents and then flowing through the corpus. Treating these
inference problems separately seems suboptimal.

6 Conclusions

We have proposed an unsupervised generative model for diachronic text corpora
that provides a formal structure for the process by which authors form new
ideas and build on existing ideas. The model captures both novelty and impact,
defining an (important) original contribution as a combination of both. For this
Passage Impact Model, we have proposed an inference procedure to identify
the most original passage of a document. Under reasonable approximations, the
inference procedure reduces to multiple convex programs that can be solved
efficiently. The method is evaluated on synthetic and real data, and it is shown to
significantly outperform a heuristic baseline for selecting a passage describing the
original contribution in the domains of online discussions and research articles.
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