

Cornell University Department of Computer Science

Why do we Need Research on Complex Outputs? • Important applications for which conventional methods don't fit!

- Noun-phrase co-reference: two step approaches of pair-wise
- classification and clustering as postprocessing, e.g. [Ng & Cardie, 2002] – Directly optimize complex loss functions (e.g. F1, AvgPrec)
- Improve upon existing methods!
 - Natural language parsing: generative models like probabilistic contextfree grammars
 - SVM outperforms naïve Bayes for text classification [Joachims, 1998] [Dumais et al., 1998]

•	Mor	Precision/Recall Break-Even Point	Naïve Bayes	Linear SVM					
	- I	Reuters	72.1	87.5					
•	– 1	WebKB	82.0	90.3					
	- I	Ohsumed	62.4	71.6					
	 Support Vector Machines 								

2

Task: Learning to predict complex outputs
 Formalizing the problem

 Multi-class classification: Generative vs. Discriminative

- Compact models for problems with structured outputs
 Training models with structured outputs
- Generative training
- SVMs and large-margin training
- Conditional likelihood training
- Example 1: Learning to parse natural language
- Learning weighted context free grammar
- Example 2: Optimizing F₁-score in text classification
- Predict vector of class labels
 Example 3: Learning to cluster
- Learning a clustering function that produces desired clusterings
 Summary & Reading
- Training Generative Model: HMM • Assume: - model class P(X,Y|ω) with parameters ω ∈ Ω • Maximum Likelihood (or alternative estimator) - Find ω' = argmax $\prod_{i=1}^{n} [P(Y = y_i, X = x_i|ω)]$ = argmax $\prod_{i=1}^{n} \prod_{j=1}^{i} P(Y_{c} = y_i^{(j)}|Y_{p} = y_i^{(j-1)})P(X_{c} = x_i^{(j)}|Y_{c} = y_i^{(j)}\rangle]$ • Example: Hidden Markov Model - Closed-form solutions $P(Y_c = y_a | Y_c = y_b) = \frac{\#ofTimesStateAFollowsStateB}{\#ofTimesStateBOccurs}$ $P(X_c = x_a | Y_c = y_b) = \frac{\#ofTimesStateAFollowsStateB}{\#ofTimesStateBOccurs}$ - Need for smoothing the estimates (e.g. max a posteriori)

Experiment: Natural Language Parsing									
Implemention									
- Implemented Sparse-Approximation Algorithm in SVM ^{light}									
 Incorporated modified v 	- Incorporated modified version of Mark Johnson's CKY parser								
- Learned weighted CFG with $\epsilon = 0.01, C = 1$									
• Data									
- Penn Treebank sentences of length at most 10 (start with POS)									
- Train on Sections 2-22:	- Train on Sections 2-22: 4098 sentences								
- Test on Section 23: 163	- Test on Section 23: 163 sentences								
	Test Accuracy Training Efficiency								
Method	Acc	F_1	CPU-h	Iter	Const				
PCFG with MLE	55.2	86.0	0	N/A	N/A				
SVM with $(1-F_1)$ -Loss	58.9	88.5	3.4	12	8043				

[Tsochantaridis et al. 05]

Applying Structural SVM to New Problem

- Application specific
 - Loss function $\Delta(y_i, y)$
 - Representation $\Phi(x, y)$
 - Algorithms to compute

 $\hat{y} = argmax_{y \in Y} \{ \vec{w}^T \Phi(x_i, y) \}$

$\hat{y} = argmax_{y \in Y} \{ \Delta(y_i, y) + \vec{w}^T \Phi(x_i, y) \}$

- Implementation SVM-struct: <u>http://svmlight.joachims.org</u>
 - Context-free grammars
 - Sequence alignment
 - Classification with multivariate loss (e.g. F1, ROC Area)
 - General API for other problems

Examples of Complex Output Spaces • Non-Standard Performance Measures (e.g. F₁-score, Lift) $-F_{l}$ -score: harmonic average of precision and recall $F_1 = \frac{2 \operatorname{Prec} \operatorname{Rec}}{\operatorname{Prec} + \operatorname{Rec}}$ - New example vector \vec{x}_8 . Predict $y_8 = 1$, if $P(y_8 = 1/\vec{x}_8) = 0.4$? → Depends on other examples! $\mathbf{x} \mathbf{\vec{x}_1}$ -1 y \vec{x}_2 _1 I'3 -1 \vec{x}_4 +1 \vec{x}_5 -1 \vec{x}_6 -1 \vec{x}_7 ± 1

[Jo 05]

Summary

- Learning to predict structured and interdependent output
- Discriminant function: h(x) = argmax_{y∈Y} [h(x, y)]
 Training:
- Generative
 - Structural SVM
 - Conditional Random Field
- Examples
 - Learning to predict trees (natural language parsing)
 - Optimize to non-standard performance measures (imbalanced classes)
 - Learning to cluster (noun-phrase coreference resolution)
- Software:
 - SVMstruct:http://svmlight.joachims.org/
 - Mallet: http://mallet.cs.umass.edu/

Reading

Generative training

- Hidden-Markov models [Manning & Schuetze, 1999]
- Probabilistic context-free grammars [Manning & Schuetze, 1999]
- Markov random fields [Geman & Geman, 1984]
- Etc.Discriminative training
 - Multivariate output regression [Izeman, 1975] [Breiman & Friedman, 1997]
 - Kernel Dependency Estimation [Weston et al. 2003]
 - Conditional HMM [Krogh, 1994]
 - Transformer networks [LeCun et al, 1998]
 - Conditional random fields [Lafferty et al., 2001] [Sutton & McCallum, 2005]
 - Perceptron training of HMM [Collins, 2002]
 - Structural SVMs / Maximum-margin Markov networks [Taskar et al., 2003] [Tsochantaridis et al., 2004, 2005] [Taskar 2004]