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Abstract

We study a partial-information online-learning problem where actions are
restricted to noisy comparisons between pairs of strategies (also known as ban-
dits). In contrast to conventional approaches that require the absolute reward of
the chosen strategy to be quantifiable and observable, our setting assumes only
that (noisy) binary feedback about the relative reward of two chosen strategies
is available. This type of relative feedback is particularly appropriate in appli-
cations where absolute rewards have no natural scale or are difficult to measure
(e.g., user-perceived quality of a set of retrieval results, taste of food, product
attractiveness), but where pairwise comparisons are easy to make. We pro-
pose a novel regret formulation in this setting, as well as present an algorithm
that achieves information-theoretically optimal regret bounds (up to a constant
factor).

1. Introduction

In partial information online learning problems (also known as bandit prob-
lems) [Rob52], an algorithm must choose, in each of T consecutive iterations,
one of K possible bandits (strategies). For conventional bandit problems, in ev-
ery iteration, each bandit receives a real-valued payoff in [0, 1], initially unkown
to the algorithm. The algorithm then chooses one bandit and receives (and thus
observes) the associated payoff. No other payoffs are observed. The goal then
is to maximize the total payoff (i.e., the sum of payoffs over all iterations).

The conventional setting assumes that observations perfectly reflect (or are
unbiased estimates of) the received payoffs. In many applications, however,
such observations may be unavailable or unreliable. Consider, for example,
applications in sensory testing or information retrieval, where the payoff is the
goodness of taste or the user-perceived quality of a retrieval result. While it
is difficult to elicit payoffs on an absolute scale in such applications, one can
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reliably obtain relative judgments of payoff (i.e. “A tastes better than B”, or
“ranking A is better than ranking B”). In fact, user behavior can often be
modeled as maximizing payoff, so that such relative comparison statements can
be derived from observable user behavior. For example, to elicit whether a
search-engine user prefers ranking r1 over r2 for a given query, Radlinski et
al. [RKJ08] showed how to present an interleaved ranking of r1 and r2 so that
clicks indicate which of the two is preferred by the user. This ready availability of
pairwise comparison feedback in applications where absolute payoffs are difficult
to observe motivates our learning framework.

Given a collection of K bandits (e.g., retrieval functions), we wish to find a
sequence of noisy comparisons that has low regret. We call this the K-armed
Dueling Bandits Problem, which can also be viewed as a regret-minimization
version of the classical problem of finding the maximum element of a set using
noisy comparisons [FRPU94]. This paper extends results originally published
in [YBKJ09] with empirical evaluations as well as a more thorough theoretical
analysis.

A canonical application example of the Dueling Bandits Problem is an
intranet-search system that is installed for a new customer. Among K built-in
retrieval functions, the search engine needs to select the one that provides the
best results on this collection, with pairwise feedback coming from clicks in the
interleaved rankings [RKJ08]. Since the search engine incurs regret whenever it
presents the results from a suboptimal retrieval function, it aims to identify sub-
optimal retrieval functions to maximize user satisfaction. More generally, the
Dueling Bandits Problem arises naturally in many applications where a system
must adapt interactively to specific user bases, and where pairwise comparisons
are easier to elicit than absolute payoffs.

One important issue is formulating an appropriate notion of regret. Since we
are concerned with maximizing user utility (or satisfaction), but utility is not
directly quantifiable in our pairwise-comparison model, a natural question to
ask is whether users, at each iteration, would have prefered another bandit over
the ones chosen by our algorithm. This leads directly to our regret formulation
(described in Section 3), which measures regret based on the (initially unknown)
probability that the best bandit b∗ would win a comparison with the chosen
bandits at each iteration. One can alternatively view this as the fraction of
users who would have prefered b∗ over the bandits chosen by our algorithm.

Our solution follows an “explore then exploit” approach, where we will bound
expected regret by the regret incurred while running the exploration algorithm.
We will present two exploration algorithms in Section 4, which we call Inter-
leaved Filter 1 and Interleaved Filter 2. Interleaved Filter 1 incurs regret that,
with high probability, is within a logarithmic factor of the information-theoretic
optimum. Interleaved Filter 2 uses an interesting extension to achieve expected
regret that is within a constant factor of the information-theoretic optimum.
We will prove the matching lower bound in Section 5. We empirically evaluate
the behavior of both algorithms in Section 7.

An interesting feature of our Interleaved Filter algorithms is that, unlike pre-
vious search algorithms based on noisy comparisons, e.g., [FRPU94], the number
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of experiments devoted to each bandit during the exploration phase is highly
non-uniform: of the K bandits, there is a small subset of bandits (O(log K)
of them in expectation) who each participate in O(K) comparisons, while the
remaining bandits only participate in O(log K) comparisons in expectation. In
Section 5 we provide insight about why existing methods suffer high regret in
our setting. Thus, our results provide theoretical support for Langford’s obser-
vation [Lan08] about a qualitative difference between algorithms for supervised
learning and those for learning from partial observations: in the supervised
setting, “holistic information is often better,” whereas in the setting of partial
observations it is often better to select a few points and observe them many
times while giving scant attention to other points.

2. Related Work

Regret-minimizing algorithms for multi-armed bandit problems and their
generalizations have been intensively studied for many years, both in the stochas-
tic [LR85] and non-stochastic [ACBFS02] cases. The vast literature on this topic
includes algorithms whose regret is within a constant factor of the information-
theoretic lower bound in both the stochastic case [ACBF02] and the non-stochastic
case [AB09]. Our use of upper confidence bounds in designing algorithms for
the dueling bandits problem is prefigured by their use in the multi-armed bandit
algorithms that appear in [Aue03, ACBF02, LR85].

Upper confidence bounds are also central to the design of multi-armed bandit
problems in the PAC setting [EDMM06, MT04], where the algorithm’s objective
is to identify an arm that is ε-optimal with probability at least 1 − δ. Our
work adopts a very different feedback model (pairwise comparisons rather than
direct observation of payoffs) and a different objective (regret minimization
rather than the PAC objective) but there are clear similarities between our
proposed algorithms and the Successive Elimination and Median Eliminiation
algorithms developed for the PAC setting in [EDMM06]. There are also some
clear differences between the algorithms: these are discussed in Section 6.

The difficulty of the dueling bandits problem stems from the fact that the
algorithm has no way of directly observing the costs of the actions it chooses.
It is an example of a partial monitoring problem, a class of regret-minimization
problems defined in [CBLS06], in which an algorithm (the “forecaster”) chooses
actions and then observes feedback signals that depend on the actions chosen
by the forecaster and by an unseen opponent (the “environment”). This pair
of actions also determines a loss, which is not revealed to the forecaster but is
used in defining the forecaster’s regret. Under the crucial assumption that the
feedback matrix has high enough rank that its row space spans the row space
of the loss matrix (which is required in order to allow for a Hannan consistent
forecaster) the results of [CBLS06] show that there is a forecaster whose regret
is bounded by O(T 2/3) against a non-stochastic (adversarial) environment, and
that there exist partial monitoring problems for which this bound cannot be im-
proved. Our dueling bandits problem is a special case of the partial monitoring
problem. In particular, our environment is stochastic rather than adversarial,
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and thus our regret bound exhibits much better (i.e., logarithmic) dependence
on T .

Banditized online learning problems based on absolute rewards (of individ-
ual actions) have been previously studied in the context of web advertising
[PACJ07, LZ07]. In that setting, clear explicit feedback is available in the form
of (expected) revenue. We study settings where such absolute measures are
unavailable or unreliable.

Our work is also closely related to the literature on computing with noisy
comparison operations [AGHB+94, BOH08, FRPU94, KK07], in particular the
design of tournaments to identify the maximum element in an ordered set, given
access to noisy comparators. All of these papers assume unit cost per compar-
ison, whereas we charge a different cost for each comparison depending on the
pair of elements being compared. In the unit-cost-per-comparison model, and
assuming that every comparison has ε probability of error regardless of the pair
of elements being compared, Feige et al. [FRPU94] presented sequential and
parallel algorithms that achieve the information-theoretically optimal expected
cost (up to constant factors) for many basic problems such as sorting, searching,
and selecting the maximum. The upper bound for noisy binary search has been
improved in a recent paper [BOH08] that achieves the information-theoretic op-
timum up to a 1 + o(1) factor. When the probability of error depends on the
pair of elements being compared (as in our dueling bandits problem), Adler et
al. [AGHB+94] and Karp and Kleinberg [KK07] present algorithms that achieve
the information-theoretic optimum (up to constant factors) for the problem of
selecting the maximum and for binary search, respectively. Our results can be
seen as extending this line of work to the setting of regret minimization. It is
worth noting that the most efficient algorithms for selecting the maximum in the
model of noisy comparisons with unit cost per comparison [AGHB+94, FRPU94]
are not suitable in the regret minimization setting considered here, because they
devote undue effort to comparing elements that are far from the maximum. This
point is discussed further in Section 6.

Yue and Joachims [YJ09] simultaneously studied a continuous version of the
Dueling Bandits Problem, where bandits (e.g., retrieval functions) are charac-
terized using a compact and convex parameter space. For that setting, they
proposed a gradient descent algorithm which achieves sublinear regret (with
respect to the time horizon). In many applications, it may be infeasible or un-
desirable to interactively explore such a large space of bandits. For instance,
in intranet search one might reasonably “cover” the space of plausible retrieval
functions with a small number of hand-crafted retrieval functions. In such cases,
selecting the best of K well-engineered solutions would be much more efficient
than searching a possibly huge space of real-valued parameters.

Learning based on pairwise comparisons is well studied in the (off-line) super-
vised learning setting called learning to rank. Typically, a preference function
is first learned using a set of i.i.d. training examples, and subsequent predic-
tions are made to minimize the number of mis-ranked pairs (e.g., [CSS99]).
Most prior work assume access to a training set with absolute labels (e.g.,
of relevance or utility) on individual examples, with pairwise preferences gen-
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erated using pairs of inputs with labels from different ordinal classes (e.g.,
[AM08, BBB+07, FISS03, HGO99, Joa05, LS07]). In the case where there
are exactly two label classes, this becomes the so-called bipartite ranking prob-
lem [AM08, BBB+07], which is a more general version of learning to optimize
ROC-Area [HGO99, Joa05, LS07].

3. The Dueling Bandits Problem

We propose a new online optimization problem, called the K-armed Du-
eling Bandits Problem, where the goal is to find the best among K bandits
B = {b1, . . . , bK}. Each iteration comprises a noisy comparison (a duel) be-
tween two bandits (possibly the same bandit with itself). We assume that the
outcomes of these noisy comparisons are independent random variables and that
the probability of b winning a comparison with b′ is stationary over time. We
write this probability as P (b > b′) = ε(b, b′) + 1/2, where ε(b, b′) ∈ (−1/2, 1/2)
is a measure of the distinguishability between b and b′. We assume that there
exists a total ordering on B such that b � b′ implies ε(b, b′) > 0. We will also
use the notation εi,j ≡ ε(bi, bj).

Let (b(t)
1 , b

(t)
2 ) be the bandits chosen at iteration t, and let b∗ be the overall

best bandit. We define strong regret based on comparing the chosen bandits
with b∗,

RT =
1
2

T∑
t=1

(
ε(b∗, b(t)

1 ) + ε(b∗, b(t)
2 )
)

, (1)

where T is the time horizon. We also define weak regret,

R̃T =
T∑

t=1

min{ε(b∗, b(t)
1 ), ε(b∗, b(t)

2 )}, (2)

which only compares b̂ against the better of b
(t)
1 and b

(t)
2 . One can regard strong

regret as the fraction of users who would have preferred the best bandit over the
chosen ones in each iteration1. More precisely, it corresponds to the fraction of
users who prefer the best bandit to a uniformly-random member of the pair of
bandits chosen, in the case of strong regret, or to the better of the two bandits
chosen, in the case of weak regret. Building from this perspective, we can also
define generalized regret,

R̄T =
T∑

t=1

rt(b
(t)
1 , b

(t)
2 ), (3)

1In the search setting, users experience an interleaving, or mixing, of results from both
retrieval functions to be compared.
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where

rt(b
(t)
1 , b

(t)
2 ) ∈

[
min{ε(b∗, b(t)

1 ), ε(b∗, b(t)
2 )}, max{ε(b∗, b(t)

1 ), ε(b∗, b(t)
2 )}

]
.

At each time step t, rt(b
(t)
1 , b

(t)
2 ) is the (potentially non-deterministic) incurred

regret of comparing b
(t)
1 and b

(t)
2 and is assumed to be bounded between the

two individual regret values. Note that both strong regret and weak regret are
special cases where rt(b

(t)
1 , b

(t)
2 ) = (ε(b∗, b(t)

1 ) + ε(b∗, b(t)
2 ))/2 and rt(b

(t)
1 , b

(t)
2 ) =

min{ε(b∗, b(t)
1 ), ε(b∗, b(t)

2 )}, respectively. We will present algorithms which achieve
identical regret bounds for all three formulations (up to constant factors) by as-
suming a property called stochastic triangle inequality, which is described in the
next section.

3.1. Assumptions
We impose additional structure to the probabilistic comparisons. First, we

assume strong stochastic transitivity, which requires that any triplet of
bandits bi � bj � bk satisfies

εi,k ≥ max{εi,j , εj,k}. (4)

This assumption provides a monotonicity constraint on possible probability val-
ues.

We also assume stochastic triangle inequality, which requires any triplet
of bandits bi � bj � bk to satisfy

εi,k ≤ εi,j + εj,k. (5)

Stochastic triangle inequality captures the condition that the probability of a
bandit winning (or losing) a comparison will exhibit diminishing returns as it
becomes increasingly superior (or inferior) to the competing bandit2.

We briefly describe two common generative models which satisfy these two
assumptions. The first is the logistic or Bradley-Terry model, where each bandit
bi is assigned a positive real value µi. Probabilistic comparisons are made using

P (bi > bj) =
µi

µi + µj
.

The second is a Gaussian model, where each bandit is associated with a random
variable Xi that has a Gaussian distribution with mean µi and variance 1.
Probabilistic comparisons are made using

P (bi > bj) = P (Xi −Xj > 0),

where Xi−Xj ∼ N(µi−µj , 2). It is straightforward to check that both models
satisfy strong stochastic transitivity and stochastic triangle inequality. We will
describe and justify a more general family of probabilistic models in Appendix
A.

2Our analysis also applies for a relaxed version where εi,k ≤ γ(εi,j + εj,k) for finite γ > 0.
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Algorithm 1 Explore Then Exploit Solution
1: Input: T , B = {b1, . . . , bK}, EXPLORE

2: (b̂, T̂ )← EXPLORE(T,B)
3: for t = T̂ + 1, . . . , T do
4: compare b̂ and b̂
5: end for

4. Algorithm and Analysis

Our solution, which is described in Algorithm 1, follows an “explore then
exploit” approach. For a given time horizon T and a set of K bandits B =
{b1, . . . , bK}, an exploration algorithm (denoted generically as EXPLORE) is
used to find the best bandit b∗. EXPLORE returns both its solution b̂ as well
as the total number of iterations T̂ for which it ran (it is possible that T̂ > T ).
Should T̂ < T , we enter an exploit phase by repeatedly choosing (b(t)

1 , b
(t)
2 ) =

(b̂, b̂), which incurs no additional regret assuming EXPLORE correctly found
the best bandit (b̂ = b∗). In the case where T̂ > T , then the regret incurred from
running EXPLORE still bounds our regret formulations (which only measure
regret up to T ), so our analysis in this section will still hold3.

We will consider two versions of our proposed exploration algorithm, which
we call Interleaved Filter 1 (IF1) and Interleaved Filter 2 (IF2). We will show
that both algorithms (which we refer to generically as IF) correctly return the
best bandit with probability at least 1 − 1/T . Correspondingly, a suboptimal
bandit is returned with probability at most 1/T , in which case we assume max-
imal regret O(T ). We can thus bound the expected regret by

E[RT ] ≤
(

1− 1
T

)
E
[
RIF

T

]
+

1
T
O(T )

= O
(
E
[
RIF

T

]
+ 1
)

(6)

where RIF
T denotes the regret incurred from running Interleaved Filter. Thus

the regret bound depends entirely on the regret incurred by Interleaved Filter.
The two IF algorithms are described in Algorithm 2 and Algorithm 3, respec-

tively. IF2 achieves an expected regret bound which matches the information-
theoretic lower bound (up to constant factors) presented in Section 5, whereas
IF1 matches with high probability the lower bound up to a log factor. We first
examine IF1 due to its ease of analysis. We then analyze IF2, which builds upon
IF1 to achieve the information-theoretic optimum.

In both versions, IF maintains a candidate bandit b̂ and simulates simultane-
ously comparing b̂ with all other remaining bandits via round robin scheduling

3In practice, we can terminate EXPLORE after it has run for T time steps, in which case
the incurred regret is strictly less than running EXPLORE to completion.
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(i.e., interleaving). Any bandit that is empirically inferior to b̂ with 1 − δ con-
fidence is removed (we will describe later how to choose δ). When some bandit
b′ is empirically superior to b̂ with 1 − δ confidence, then b̂ is removed and b′

becomes the new candidate b̂ ← b′. IF2 contains an additional step where all
empirically inferior bandits (even if lacking 1−δ confidence) are removed (called
pruning – see lines 16-18 in Algorithm 3). This process repeats until only one
bandit remains. Assuming IF has not made any mistakes, then it will return
the best bandit b̂ = b∗.

Terminology. Interleaved Filter makes a “mistake” if it draws a false
conclusion regarding a pair of bandits. A mistake occurs when an inferior bandit
is determined with 1−δ confidence to be the superior one. We call the additional
step of IF2 (lines 16-18 in Algorithm 3) “pruning”. We define a “match” to
be all the comparisons Interleaved Filter makes between two bandits, and a
“round” to be all the matches played by one candidate b̂. We always refer to
log x as the natural log, lnx, whenever the distinction is necessary.

In our analysis, we assume without loss of generality that the bandits in B
are sorted in preferential order b1 � . . . � bK . Then for T ≥ K, we will show in
Theorem 1 that running IF1 incurs, with high probability, regret bounded by

RIF1
T = O

(
K log K

ε1,2
log T

)
.

Note that ε1,2 = P (b1 � b2) − 1/2 is the distinguishability between the two
best bandits. Due to strong stochastic transitivity, ε1,2 lower bounds the distin-
guishability between the best bandit and any other bandit. We will also show
in Theorem 2 that running IF2 incurs expected regret bounded by

E
[
RIF2

T

]
= O

(
K

ε1,2
log T

)
,

which matches the information-theoretic lower bound (up to constant factors)
described in Section 5.

Analysis Approach. Our analysis follows three phases. We first bound
the regret incurred for any match. Then for both IF1 and IF2, we show that the
probability of making a mistake is at most 1/T . We finally bound the matches
played by IF1 and IF2 to arrive at our final regret bounds.

4.1. Confidence Intervals
In a match between bi and bj , Interleaved Filter maintains a number

P̂i,j =
# bi wins

# comparisons
, (7)

which is the empirical estimate of P (bi � bj) after t comparisons4. For ease
of notation, we drop the subscripts (bi, bj), and use P̂t, which emphasizes the

4In other words, P̂i,j is the fraction of these t comparisons in which bi was the winner.
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Algorithm 2 Interleaved Filter 1 (IF1)
1: Input: T , B = {b1, . . . , bK}
2: δ ← 1/(TK2)
3: Choose b̂ ∈ B randomly
4: W ← {b1, . . . , bK} \ {b̂}
5: ∀b ∈W , maintain estimate P̂b̂,b of P (b̂ > b) according to (7)
6: ∀b ∈W , maintain 1− δ confidence interval Ĉb̂,b of P̂b̂,b according to (8), (9)
7: while W 6= ∅ do
8: for b ∈W do
9: compare b̂ and b

10: update P̂b̂,b, Ĉb̂,b
11: end for
12: while ∃b ∈W s.t.

(
P̂b̂,b > 1/2 ∧ 1/2 /∈ Ĉb̂,b

)
do

13: W ←W \ {b} //b̂ declared winner against b
14: end while
15: if ∃b′ ∈W s.t.

(
P̂b̂,b′ < 1/2 ∧ 1/2 /∈ Ĉb̂,b′

)
then

16: b̂← b′, W ←W \ {b′} //b′ declared winner against b̂ (new round)
17: ∀b ∈W , reset P̂b̂,b and Ĉb̂,b
18: end if
19: end while
20: T̂ ← Total Comparisons Made
21: return (b̂, T̂ )

dependence on the number of comparisons. IF also maintains a confidence
interval

Ĉt = (P̂t − ct, P̂t + ct), (8)

where

ct =
√

4 log(1/δ)/t. (9)

We justify the construction of these confidence intervals in the following lemma.

Lemma 1. For δ = 1/(TK2), the number of comparisons in a match between
bi and bj is with high probability at most

O

(
1

ε2i,j
log(TK)

)
.

Moreover, the probability that the inferior bandit is declared the winner at some
time t ≤ T is at most δ.

Proof. First we argue that the probability of the inferior bandit being declared
the winner is at most δ. Note that by the stopping condition of the match, if
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we mistakenly declare the inferior bandit the winner at time t, then we must
have 1/2 + εi,j /∈ Ĉt (note that εi,j can be either positive or negative). By the
definition of Ĉt and the fact that E[P̂t] = 1/2 + εi,j , we have P (1/2 + εi,j /∈
Ĉt) = P (|P̂t − E[P̂t]| ≥ ct). It follows from Hoeffding’s inequality [Hoe63] that
the probability of making a mistake at time t is bounded above by

P (|P̂t −E[P̂t]| ≥ ct) ≤ 2 exp(−2tc2
t ) = 2 exp(−8 log(1/δ)) = 2δ8 =

2
T 8K16

.

Now an application of the union bound shows that the probability of making a
mistake at any time t ≤ T is bounded above by

P

(
T⋃

t=1

{1/2 + εi,j /∈ Ĉt}

)
≤ 2T

T 8K16
≤ 1

TK2
= δ,

provided that K ≥ 2, which is the desired result.
We now show that the number of comparisons n in a match between bi and

bj is O(log(TK)/ε2i,j) with high probability. Specifically, we will show that for
any d ≥ 1, there exists an m depending only on d such that

P

(
n ≥ m

ε2i,j
log(TK)

)
≤ K−d

for all K sufficiently large. By the stopping condition of the match, if at any
time t we have P̂t− ct > 1/2, then the match terminates. It follows that for any
time t, if n > t, then P̂t − ct ≤ 1/2, and so

P (n > t) ≤ P (P̂t − ct ≤ 1/2).

To bound this probability, assume without loss of generality that εi,j > 0, and
note that since E[P̂t] = 1/2 + εi,j , we have

P (P̂t − ct ≤ 1/2) = P (P̂t − 1/2− εi,j ≤ ct − εi,j) = P (E[P̂t]− P̂t ≥ εi,j − ct).

For any m ≥ 8 and t ≥ d2m log(TK2)/ε2i,je, we have ct ≤ εi,j/2, and so applying
Hoeffding’s inequality for this m and t shows

P (E[P̂t]− P̂t ≥ εi,j − ct) ≤ P (|P̂t −E[P̂t]| ≥ εi,j/2) ≤ 2 exp(−tε2i,j/2).

Since t ≥ 2m log(TK2)/ε2i,j by assumption, we have tε2i,j/2 ≥ m log(TK2), and
so

2 exp(−tε2i,j/2) ≤ 2 exp(−m log(TK2)) =
2

TmK2m
≤ K−m

for K ≥ 2, which proves the claim.
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4.2. Regret per Match
We now bound the accumulated regret of each match. We first bound strong

and weak regret, and then extend the result to generalized regret.

Lemma 2. Assuming b1 has not been removed and T ≥ K, then with high
probability the accumulated weak regret and also strong regret from any match
is at most

O
(

1
ε1,2

log T

)
.

Proof. Suppose the candidate bandit b̂ = bj is playing a match against bi. Since
all matches within a round are played simultaneously, then by Lemma 1, any
match played by bj contains at most

O

(
1

ε21,j

log(TK)

)
≤ O

(
1

ε21,2

log(TK)

)
comparisons, where the inequality follows from strong stochastic transitivity.
Note that min{ε1,j , ε1,i} ≤ ε1,j . Then the accumulated weak regret (2) is
bounded by

ε1,jO

(
1

ε21,j

log(TK)

)
= O

(
1

ε1,j
log(TK)

)
≤ O

(
1

ε1,2
log(TK)

)
= O

(
1

ε1,2
log T

)
(10)

where (10) holds since log(TK) ≤ log(T 2) = 2 log T . We now bound the ac-
cumulated strong regret (1) by leveraging stochastic triangle inequality. Each
comparison incurs ε1,j + ε1,i regret. We now consider three cases.

Case 1: Suppose bi � bj . Then ε1,j + ε1,i ≤ 2ε1,j , and the accumulated
strong regret of the match is bounded by

2ε1,jO

(
1

ε21,j

log(TK)

)
≤ O

(
1

ε1,2
log(TK)

)
Case 2: Suppose bj � bi and εj,i ≤ ε1,j . Then

ε1,j + ε1,i ≤ ε1,j + ε1,j + εj,i

≤ 3ε1,j

and the accumulated strong regret is bounded by

3ε1,jO

(
1

ε21,j

log(TK)

)
= O

(
1

ε1,j
log(TK)

)
≤ O

(
1

ε1,2
log(TK)

)
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Case 3: Suppose bj � bi and εj,i > ε1,j . Then we can also use Lemma 1 to
bound with high probability the number of comparisons by

O

(
1

ε2j,i
log(TK)

)
.

The accumulated strong regret is then bounded by

3εj,iO

(
1

ε2j,i
log(TK)

)
= O

(
1

εj,i
log(TK)

)
≤ O

(
1

ε1,j
log(TK)

)
≤ O

(
1

ε1,2
log(TK)

)
Like in the analysis for weak regret (10), we finally note that

O
(

1
ε1,2

log(TK)
)

= O
(

1
ε1,2

log T

)
.

Lemma 3. Assuming b1 has not been removed and T ≥ K, then with high
probability the accumulated generalized regret from any match is at most

O
(

1
ε1,2

log T

)
.

Proof. Suppose the candidate bandit b̂ = bj is playing a match against bi. At
each time step t that bi is compared to bj , the accumulated generalized regret for
that comparison is r(bi, bj) ∈ [min{ε1,i, ε1,j},max{ε1,i, ε1,j}]. Let n denote the
number of comparisons made in the match. Then the accumulated generalized
regret can be bounded by

n max{ε1,i, ε1,j} ≤ n (ε1,i + ε1,j) = O
(

1
ε1,2

log T

)
,

where the last equality is the regret bound for strong regret derived in Lemma
2.

In the next two sections, we will bound the mistake probability and total
matches played by IF1 and IF2, respectively.

4.3. Regret Bound for Interleaved Filter 1
We first state our main regret bound for Interleaved Filter 1.
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Theorem 1. Running Algorithm 1 with B = {b1, . . . , bK}, time horizon T
(T ≥ K), and IF1 incurs expected generalized regret (and thus also weak and
strong regret) bounded by

E[RT ] ≤ O
(
E
[
RIF1

T

])
= O

(
K log K

ε1,2
log T

)
.

The theorem will follow from combining Lemma 3, (6), and Lemmas 4 and
6 to follow. We begin by analyzing the probability of IF1 making a mistake.

Lemma 4. IF1 makes a mistake with probability at most 1/T .

Proof. By Lemma 1, the probability that IF1 makes a mistake in any given
match is at most 1/(TK2). Since K2 is a trivial upper bound on the number of
matches, applying the union bound over all matches proves the lemma.

We assume for the remainder of this section that IF1 is mistake-free, since
the cost of making a mistake is considered in (6), and we are interested here
in bounding RIF1

T . We can model the sequence of candidate bandits using the
following random walk model.

Definition 1. (Random Walk Model) Define a random walk graph with K
nodes labeled b1, . . . , bK (these will correspond to the similarly named bandits).
Each node bj (j > 1) transitions to bi for j > i ≥ 1 with probability 1/(j − 1),
or in other words bj transitions to b1, . . . , bj−1 with uniform probability. The
final node b1 is an absorbing node.

A path in the Random Walk Model corresponds to a sequence of candidate
bandits taken by IF (both IF1 and IF2) in an instance of the Dueling Bandits
problem where ε1j = ε2j = . . . = εj−1,j for all j > 1 (and no mistakes are made).
Thus, the path length of the random walk is exactly to the number of rounds
in IF.

Proposition 1. Either IF makes a mistake, or else the number of rounds in
the execution of IF is stochastically dominated by the path length of a random
walk in the Random Walk Model.

Proposition 1 follows directly from Lemma 14 in Appendix B. This allows us
to concentrate our analysis on the (simpler) upper bound setting of the Random
Walk Model. We will prove that the random walk in the Random Walk Model
requires O(log K) steps with high probability. Let Xi (1 ≤ i < K) be an
indicator random variable corresponding to whether a random walk starting
at bK visits bi in the Random Walk Model. We first analyze the marginal
probability of each P (Xi = 1), and also show that X1, . . . , XK−1 are mutually
independent.

Lemma 5. Let Xi be as defined above with 1 ≤ i < K. Then

P (Xi = 1) =
1
i
,

13



and furthermore, for all W ⊆ {X1, . . . , XK−1}, we can write P (W ) ≡ P (
∧

i∈W Xi)
as

P (W ) =
∏

Xi∈W

P (Xi), (11)

meaning X1, . . . , XK−1 are mutually independent.

Proof. We can rewrite (11) as

P (W ) =
∏

Xi∈W

P (Xi|Wi),

where Wi = {Xj ∈W |j > i}.
We first consider W = {X1, . . . , XK−1}. For the factor on Xi, denote with

j the smallest index in Wi with Xj = 1 in the condition. Then

P (Xi = 1|Xi+1, ..., XK−1)

= P (Xi = 1|Xi+1 = 0, ..., Xj−1 = 0, Xj = 1) =
1
i
,

since the walk moved to one of the first i nodes with uniform probability inde-
pendent of j. Since ∀j > i : P (Xi = 1|Xj = 1) = 1

i , this implies P (Xi = 1) = 1
i .

So we can conclude

P (X1, . . . , XK−1) =
K−1∏
i=1

P (Xi).

Now consider arbitrary W . We use
∑

W c to indicate summing over the joint
states of all Xi variables not in W . We can write P (W ) as

P (W ) =
∑
W c

P (X1, . . . , XK−1)

=
∑
W c

K−1∏
i=1

P (Xi)

=
∏

Xi∈W

P (Xi)

(∑
W c

∏
Xi∈W c

P (Xi)

)
=

∏
Xi∈W

P (Xi).

This proves mutual independence (11).

We can express the number of steps taken by a random walk from bK to b1

in the Random Walk Model as

SK = 1 +
K−1∑
i=1

Xi. (12)

14



Lemma 5 implies that

E[SK ] = 1 +
K−1∑
i=1

E[Xi] = 1 + HK−1 ≈ log K,

where Hi is the harmonic sum. We now show that SK = O(log K) with high
probability.

Lemma 6. Assuming IF1 is mistake-free, then it runs for O(log K) rounds
with high probability.

Proof. Due to Proposition 1, it suffices to analyze the distribution of path
lengths in the Random Walk Model. It thus suffices to show that for any d
sufficiently large, there exists a m depending only on d such that

∀K ≥ 1 : P (SK > m log K) ≤ 1
Kd

, (13)

for SK as defined in (12). From Lemma 5, we know that the random variables
X1, . . . , XK−1 in SK are mutually independent. Then using the Chernoff bound
[MR95], we know that for any m > 1,

P (SK > m(1 + HK−1)) ≤
(

em−1

mm

)1+HK−1

≤
(

em−1

mm

)1+log K

(14)

= (eK)m−1−m log m

(14) is true since
log K ≤ HK−1 < log K + 1

for all K ≥ 1. We require this bound to be at most 1/Kd, or

(eK)m−1−m log m ≤ K−d.

The above inequality is satisfied by m ≥ d for d ≥ e. The Chernoff bound
applies for all K ≥ 0. So for any d ≥ e, we can choose m = d to satisfy (13).

Corollary 1. Assuming IF1 is mistake-free, then it plays O(K log K) matches
with high probability.

Proof. The result immediately follows from Lemma 6 by noting that IF1 plays
at most O(K) matches in each round.
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Algorithm 3 Interleaved Filter 2 (IF2)
1: Input: T , B = {b1, . . . , bK}
2: δ ← 1/(TK2)
3: Choose b̂ ∈ B randomly
4: W ← {b1, . . . , bK} \ {b̂}
5: ∀b ∈W , maintain estimate P̂b̂,b of P (b̂ > b) according to (7)
6: ∀b ∈W , maintain 1− δ confidence interval Ĉb̂,b of P̂b̂,b according to (8), (9)
7: while W 6= ∅ do
8: for b ∈W do
9: compare b̂ and b

10: update P̂b̂,b, Ĉb̂,b
11: end for
12: while ∃b ∈W s.t.

(
P̂b̂,b > 1/2 ∧ 1/2 /∈ Ĉb̂,b

)
do

13: W ←W \ {b} //b̂ declared winner against b
14: end while
15: if ∃b′ ∈W s.t.

(
P̂b̂,b′ < 1/2 ∧ 1/2 /∈ Ĉb̂,b′

)
then

16: while ∃b ∈W s.t. P̂b̂,b > 1/2 do
17: W ←W \ {b} //pruning
18: end while
19: b̂← b′, W ←W \ {b′} //b′ declared winner against b̂ (new round)
20: ∀b ∈W , reset P̂b̂,b and Ĉb̂,b
21: end if
22: end while
23: T̂ ← Total Comparisons Made
24: return (b̂, T̂ )

4.4. Regret Bound for Interleaved Filter 2
We first state our main regret bound for Interleaved Filter 2.

Theorem 2. Running Algorithm 1 with B = {b1, . . . , bK}, time horizon T
(T ≥ K), and IF2 incurs expected generalized regret (and thus also weak and
strong regret) bounded by

E[RT ] ≤ O
(
E
[
RIF2

T

])
= O

(
K

ε1,2
log T

)
.

The proof follows immediately from combining Lemma 3, (6), and Lemmas
8 and 9 to follow. IF2 improves upon IF1 by removing all empirically inferior
bandits whenever the incumbant is defeated, which we call pruning. We begin
by analyzing the pruning technique. The following lemma could be informally
summarized by saying that when IF2 produces a new incumbent b′ and then
eliminates a bandit b in the subsequent pruning step, we can conclude that b′ is
superior to b with 1− (δT ) confidence.
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Lemma 7. For all triples of bandits b, b′, b̂ such that b � b′, the probability
that IF2 eliminates b in a pruning step in which b′ wins a match against the
incumbent bandit b̂ (i.e. P̂b̂,b′ < 1/2) while b is found to be empirically inferior
to b̂ (i.e. P̂b̂,b > 1/2) is at most δ.

Proof. Let X1, X2, . . . denote an infinite sequence of i.i.d. Bernoulli random vari-
ables with E[Xi] = P (b̂ � b′), and let Y1, Y2, . . . denote an infinite sequence of
i.i.d. Bernoulli random variables with E[Yi] = P (b̂ � b). We couple the outcomes
of the comparisons performed by the algorithm to the sequences (Xi), (Yi) in
the obvious way: Xi (resp. Yi) represents the outcome of the ith comparison
between b̂ and b′ (resp. b̂ and b) if the algorithm performs at least i compar-
isons of that pair of bandits; otherwise Xi (resp. Yi) does not correspond to any
comparison observed by the algorithm.

If b is eliminated by IF2 in a pruning step at the end of a match consisting
of n comparisons between b′ and the incumbent b̂, then X1, . . . , Xn represent
the outcomes of the n matches between b̂ and b′ in that round, and Y1, . . . , Yn

represent the outcomes of the n matches between b̂ and b in that round. From
the definition of confidence intervals in IF2 we know that X1 + · · · + Xn <
n/2 −

√
4n log(1/δ), whereas the definition of the pruning step implies that

Y1 + · · · + Yn > n/2. Thus, if we define Zi = Yi −Xi for i = 1, 2, . . ., then we
have

Z1 + · · ·+ Zn >
√

4n log(1/δ). (15)

To complete the proof of the lemma, we will show the probability that there
exists an n satisfying (15) is at most δT .

The random variables (Zi)∞i=1 are i.i.d. and satisfy |Zi| ≤ 1. Furthermore,
our assumption that b � b′ together with strong stochastic transitivity implies
that

E[Zi] = P (b̂ � b)− P (b̂ � b′) ≤ 0.

By Hoeffding’s inequality, for every n the probability that
∑n

i=1 Zi exceeds√
4n log(1/δ) is at most exp(−8n log(1/δ)/(4n)) = δ2. Taking the union bound

over n = 1, 2, . . . , T , we find that the probability that there exists an n satisfy-
ing (15) is at most δ2T ≤ δ, as claimed.

Lemma 8. The probability that IF2 makes a mistake resulting in the eliminia-
tion of bandit b1 is at most 1/T .

Proof. By Lemma 1, for every i the probability that b1 is eliminated in a match
against bi is at most δ. A union bound over all i implies that the probability of
b1 being eliminated by directly losing a match to some other bandit is at most
δ(K − 1). On the other hand, by Lemma 1, for all i, j the probability that b1

is eliminated in a pruning step resulting from a match in which bi defeats bj is
at most δ. A union bound over all i, j implies that the probability of b1 being
eliminated in a pruning step is at most δ(K − 1)2. Summing these two bounds,
the probability that IF2 makes a mistake resulting in the elimination of b1 is at
most δ[(K − 1) + (K − 1)2] < δK2 = 1/T.
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For the remainder of this section, we analyze the behavior of IF2 when it is
mistake-free. We will show that, in expectation, IF2 plays O(K) matches and
thus incurs expected regret bounded by

O
(

K

ε1,2
log T

)
.

Lemma 9. Assuming IF2 is mistake free, then it plays O(K) matches in ex-
pectation.

Proof. Let Bj denote a random variable counting the number of matches played
by bj when it is not the incumbant (to avoid double-counting). We can write
Bj as

Bj = Aj + Gj ,

where Aj indicates the number of matches played by bj against bi for i > j
(when the incumbant was inferior to bj), and Gj indicates the number of matches
played by bj against bi for i < j (when the incumbant was superior to bj). We
can thus bound the expected number of matches played via

K−1∑
j=1

E[Bj ] =
K−1∑
j=1

E[Aj ] + E[Gj ]. (16)

By Lemma 5 and leveraging the Random Walk Model defined in Section 4.3,
we can write E[Aj ] as

E[Aj ] ≤ 1 +
K−1∑

i=j+1

1
i

= 1 + HK−1 −Hi,

where Hi is the harmonic sum.
We now analyze E[Gj ]. We assume the worst case that bj does not lose a

match (with 1 − δ confidence) to any superior incumbant bi before the match
concludes (bi is defeated) unless bi = b1. We can thus bound E[Gj ] using the
probability that bj is pruned at the conclusion of each round. Let Ej,t denote
the event that bj is pruned after the tth round in which the incumbant bandit
is superior to bj , conditioned on not being pruned in the first t− 1 such rounds.
Define Gj,t to indicate the number of matches beyond the first t − 1 played
by bj against a superior incumbant, conditioned on playing at least t − 1 such
matches. We can write E[Gj,t] as

E[Gj,t] = 1 + P (Ec
j,t)E[Gj,t+1],

and thus

E[Gj ] ≤ E[Gj,1] ≤ 1 + P (Ec
j,1)E[Gj,2]. (17)

We know that P (Ec
j,t) ≤ 1/2 for all j 6= 1 and t. From Lemma 6, we know

that E[Gj,t] ≤ O(K log K) and is thus finite. Hence, we can bound (17) by the
infinite geometric series 1 + 1/2 + 1/4 + . . . = 2.
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We can thus write (16) as

K−1∑
j=1

E[Aj ] + E[Gj ] ≤
K−1∑
j=1

(1 + HK−1 −Hj) + 2(K − 1)

=
K−1∑
j=1

1 +
K−1∑

i=j+1

1
i

+ 2(K − 1)

=
K−1∑
j=1

(j − 1)
1
j

+ 3(K − 1) = O(K).

5. Lower Bounds

We now show that the bound in Theorem 2 is information theoretically
optimal up to constant factors. The proof is similar to the lower bound proof
for the standard stochastic multi-armed bandit problem. However, since we
make a number of assumptions not present in the standard case (such as a total
ordering of B), we present a simple self-contained lower bound argument, rather
than a reduction from the standard case.

Theorem 3. Any algorithm φ for the dueling bandits problem satisfies

Rφ
T = Ω

(
K

ε
log T

)
,

where ε = minb 6=b∗ P (b∗ > b).

Here is a heuristic explanation of why we might suspect the theorem to be
true. Rather than consider the general problem of identifying the best of K
bandits, suppose we are given a bandit b, and asked to determine with prob-
ability at least 1 − 1/T whether b is the best bandit. (Intuitively, the regret
incurred by the optimal algorithm for this decision problem should be a lower
bound on the regret incurred by the optimal algorithm for the general problem).
We have seen that, given two bandits bi and bj with P (bi > bj) = 1/2 + ε, we
can identify the better bandit with probability at least 1−1/T after O(log T/ε2)
comparisons. If this is in fact the minimum number of comparisons required,
then we would suspect that any algorithm for the above decision problem that
is uniformly good over all problem instances must perform Ω(log T/ε2) compar-
isons involving each inferior bandit. We will see in Lemma 10 that this is in fact
the case, and we begin by constructing the appropriate problem instance.

Fix ε > 0 and define the following family of problem instances. In instance
j, let bj be the best bandit, and order the remaining bandits by their indices.
That is, in instance j, we have bj � bk for all k 6= j, and for i, k 6= j, we have
bi � bk whenever i < k. Given this ordering, define the winning probabilities
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by P (bi > bk) = 1/2 + ε whenever bi � bk. Note that this construction yields a
valid problem instance, i.e. one that satisfies (4), (5).

Let qj be the distribution on T -step histories induced by a given algorithm
φ under instance j, and let nj,T be the number of comparisons involving bandit
bj scheduled by φ up to time T. Using these instances, we prove Lemma 10,
from which Theorem 3 follows.

Lemma 10. Let φ be an algorithm for the dueling bandits problem such that

Rφ
T = o(T a) (18)

for all a > 0. Then for all j,

Eq1 [nj,T ] = Ω
(

log T

ε2

)
.

Lemma 10 formalizes the intuition given above, in that any algorithm whose
regret is o(T a) over all problem instances must make Ω(log T/ε2) comparisons
involving each inferior bandit, in expectation. The proof is motivated by Lemma
5 of [KNMS08].

Proof. Fix an algorithm φ satisfying assumption (18), and fix 0 < a < 1/2.
Define the event Ej = {nj,T < log(T )/ε2}, and let J = {j : q1(Ej) < 1/3}. For
each j ∈ J, we have by Markov’s inequality that

Eq1 [nj,T ] ≥ q1(Ec
j )(log(T )/ε2) = Ω

(
log T

ε2

)
,

so it remains to show that Eq1 [nj,T ] = Ω(log T/ε2) for each j /∈ J. For any j,
we know that under qj , the algorithm φ incurs regret ε for every comparison
involving a bandit b 6= bj . This fact together with the assumption (18) on φ
implies that Eqj

[T −nj,T ] = o(T a). Using this fact and Markov’s inequality, we
have

qj(Ej) = qj({T − nj,T > T − log(T )/ε2})

≤
Eqj

[T − nj,T ]
T − log(T )/ε2

= o(T a−1),

and so choosing T sufficiently large shows that qj(Ej) < 1/3 for each j (and in
particular, that 1 ∈ J by construction). Now by Lemma 6.3 of [KK07], we have
that for any event E and distributions p, q with p(E) ≥ 1/3 and q(E) < 1/3,

KL(p; q) ≥ 1
3

ln
(

1
3q(E)

)
− 1

e
.

For each j /∈ J, we may apply this lemma with q1, qj , and the event Ej , to show

KL(q1; qj) ≥ 1
3

ln
(

1
3o(T a−1)

)
− 1

e

= Ω(log T ). (19)
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On the other hand, by the chain rule for KL divergence [CT99], we have

KL(q1; qj) ≤ Eq1 [nj,T ]KL(1/2 + ε; 1/2− ε)
≤ 16ε2Eq1 [nj,T ], (20)

where we use the shorthand KL(1/2 + ε; 1/2− ε) to denote the KL-divergence
between two Bernoulli distributions with parameters 1/2 + ε and 1/2 − ε, re-
spectively. The first inequality follows from the fact that the distribution on
the outcome of a comparison will differ under distributions q1 and qj only if the
comparison involves bandit bj , and the second inequality follows from a standard
result on the KL divergence between two Bernoulli distributions. Combining
(19) and (20) shows that Eq1 [nj,T ] = Ω(log T/ε2) for each j /∈ J, which proves
the lemma.

Proof of Theorem 3. Let φ be any algorithm for the dueling bandits problem.
If φ does not satisfy the hypothesis of Lemma 10, the theorem holds trivially.
Otherwise, on the problem instance specified by q1, φ incurs regret at least ε
every time it plays a match involving bj 6= b1. It follows from Lemma 10 that

Rφ
T ≥

∑
j 6=1

εEq1 [nj,T ] = Ω
(

K

ε
log T

)
.

6. Discussion of Related Work

Algorithms for finding maximal elements in a noisy information model are
discussed in [FRPU94]. That paper describes a tournament-style algorithm
that returns the best of K elements with probability 1− δ in O(K log(1/δ)/ε2)
comparisons, where ε is the minimum margin of victory of one element over an
inferior one. This is achieved by arranging the elements in a binary tree and
running a series of mini-tournaments, in which a parent and its two children
compete until a winner can be identified with high confidence. Winning nodes
are promoted to the parent position, and lower levels of the tree are pruned
to reduce the total number of comparisons. The maximal element eventually
reaches the root of the tree with high probability.

Such a tournament could incur very high regret in our framework. Consider a
mini-tournament involving three suboptimal but barely distinguishable elements
(e.g. P (b∗ > bi,j,k) ≈ 1, but P (bi > bj) = 1/2 + γ for γ � 1). This tournament
would require Ω(1/γ2) comparisons to determine the best element, but each
comparison would contribute Ω(1) to the total regret. Since γ can be arbitrarily
small compared to ε∗ = ε1,2, this yields a regret bound that can be arbitrarily
worse than the above lower bound. In general, algorithms that achieve low regret
in our model must avoid such situations, and must discard suboptimal bandits
after as few comparisons as possible. This heuristic motivates the interleaved
structure proposed in our algorithms, which allows for good control over the
number of matches involving suboptimal bandits.
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Figure 1: Comparing regret ratio between IF1 and IF2 in worst-case simulations.

This discussion also sheds light on the reasons our algorithms for the du-
eling bandits problem differ from algorithms that achieve optimal or near-
optimal sample complexity bounds for multi-armed bandit problems in the
PAC setting [EDMM06]. As mentioned in Section 2, there are striking sim-
ilarities between our IF1 algorithm and the Successive Elimination algorithm
from [EDMM06] as well as similarities between our IF2 algorithm and the Me-
dian Elimination algorithm from [EDMM06]. However, as explained in the
preceding paragraph, in our setting all of the highly suboptimal arms (those
contributing significantly more than ε regret per sample) must be eliminated
quickly (before sampling more than ε−2 times). In the Successive/Median
Elimination algorithms, every arm is sampled at least ε−2 times. The need
to eliminate highly suboptimal arms quickly is specific to the regret minimiza-
tion setting and exerts a strong influence on the design of the algorithm; in
particular, it motivates the interleaved structure as explained above. This de-
sign choice prompts another feature of our algorithms that distinguishes them
from the Successive/Median Elimination algorithms, namely the choice of an
“incumbent” arm in each phase that participates in many more samples than
the other arms. The algorithms for the PAC setting [EDMM06] distribute the
sampling load evenly among all arms participating in a phase.

7. Experiments

7.1. Synthetic Simulations
We performed numerical simulations on two synthetic problem instances.

The first set of simulations used the worst-case instance from the lower bound
proof of Theorem 3. In this instance, P (bi > bj) = 1/2 + ε whenever i < j.
For the experiment, we fixed ε = 0.1 and a time horizon T = 107. We varied K
from 100 to 500 in increments of 50, and for each value of K, we performed 500
simulations of both IF1 and IF2. In Figure 1, we plot the ratio of the regret
incurred by IF1 and IF2 (which we henceforth also call the regret ratio).
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Figure 2: Comparing regret ratio between IF1 and IF2 in random case simulations.

For the second set of simulations, we generated random problem instances
according to a Bradley-Terry model with uniformly random weights. For nor-
malization purposes, we then modified each problem instance to ensure that
the best bandit had a winning probability of at least 1/2 + ε against all other
bandits. The details of the procedure are as follows. For each value of K,
we generated K − 1 random numbers w2, . . . , wK sampled independently from
the uniform distribution on (0, 1). To define w1, we found the largest weight
wmax = max{w2, . . . , wK}, and defined w1 = wmax(1 + 2ε)/(1 − 2ε). We then
defined P (bi > bj) = wi/(wi + wj), so that for all i 6= 1,

P (b1 > bi) =
w1

w1 + wi
≥ w1

w1 + wmax
=

1
2

+ ε.

Note that this is the Bradley-Terry model discussed in Section 3.1, which sat-
isfies the assumptions of that section. We fixed ε = 0.1 and T = 107, and
performed 500 simulations of IF1 and IF2 on each of the randomly generated
instances. We plot the regret ratio of IF1 and IF2 in Figure 2.

For the worst-case simulations, we see that IF2 outperforms IF1, and that
the median of the regret ratio increases logarithmically with K. For the random-
case simulations, we see that IF2 outperforms IF1, but the regret ratio does not
increase with K as in the worst-case simulations. Intuitively, IF1 and IF2 incur
a large amount of regret during matches in which P (bi > bj) is close to 1/2. In
the worst-case problem instance, this is guaranteed to be true for every match,
by construction. Consequently, each pruning step performed by IF2 reduces the
total regret incurred by a significant amount, by eliminating a high-cost match
that would otherwise be played. In contrast to the worst-case instances, we
expect that in the random-case, many matches will have P (bi > bj) far from
1/2, and thus will contribute little to the total regret. A pruning step that
eliminates such a match will have little effect on the total regret, and so we
should expect the regret of IF1 and IF2 to be more similar in the random-case
than in the worst-case, as observed in our simulations.
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Figure 3: Comparing regret ratio between IF1 and IF2 in web search simulations.

Figure 4: Comparing matches played ratio between IF1 and IF2 in web search simulations.

7.2. Web Search Simulations
For a more realistic simulation, we leveraged a real Web Search dataset (cour-

tesy of Chris Burges at Microsoft Research). The idea is to simulate users issuing
queries by sampling from queries in the dataset. For each query, the competing
retrieval functions will produce rankings, after which the “user” will randomly
prefer one ranking over the other. User preferences are modeled probabilistically
using the logistic transfer function and NDCG@10, which is a measure used for
evaluating the quality of rankings in information retrieval tasks (see [DSB09]).

We varied the number of bandits (retrieval functions) K from 100 to 500
in increments of 50. For each experimental setting, we randomly selected K
retrieval functions from a pool of 1000 retrieval functions gathered from similar
experiments performed for the continuous dueling bandits problem [YJ09]). For
each value of K, we used 25 experimental settings with 25 trials per setting. We
fixed T = 107 for all settings, since our primary goal in this experiment is to
compare the performance of IF1 and IF2. We used strong regret (1) to measure
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performance.
Figure 3 shows a box plot of the regret ratio for IF1 and IF2. Since different

collections of retrieval functions yield different performances (due to differences
in the distinguishability between the bandits), it is more informative to com-
pare the ratio of regret on the same initial conditions5. We can see that IF2
consistently outperforms IF1, however the performance ratio does not scale as
log(K) as implied by our worst case bounds.

Intuitively, as also discussed for the synthetic experiments, there are two
conditions that must be satisfied for IF2 to improve by a logarithmic factor over
IF1. First, a logarithmic number of rounds must be played (i.e., we must con-
sider a logarithmic number of candidate bandits). Second, within each round,
most of the bandits must not be confidently eliminated from consideration (so
they can be eliminated via the pruning procedure in IF2). Satisfying both
of these conditions would imply IF1 playing a logarithmic factor more matches
than IF2. In the web search dataset, we observe neither condition being strongly
satisfied. In all settings, only a small number of rounds are played (typically
between 2 and 4) for all values of K (which admittedly only ranges up to 500
in our experiments). Futhermore, in many rounds, a substantial fraction of
the bandits are confidently eliminated from consideration before the conclusion
of the round. This is summarized in Figure 4, which shows a box plot of the
ratio of matches played between IF1 and IF2. Nonetheless, we can see that
IF2 can offer real practical improvements over IF1, although the difference in
performance is perhaps not as dramatic as suggested by the worst case analysis.

8. Conclusion

We have proposed a novel framework for partial information online learning
in which feedback is derived from pairwise comparisons, rather than absolute
measures of utility. We have defined a natural notion of regret for this prob-
lem, and designed algorithms that are information theoretically optimal for this
performance measure. Our results extend previous work on computing in noisy
information models, and are motivated by practical considerations from infor-
mation retrieval applications. Future directions include finding other reasonable
notions of regret in this framework (e.g., via contextualization [LZ07]), and de-
signing algorithms that achieve low-regret when the set of bandits is very large
(a special case of this is addressed in [YJ09]).
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[CBLS06] Nicolò Cesa-Bianchi, Gábor Lugosi, and Gilles Stoltz. Regret min-
imization under partial monitoring. Mathematics of Operations
Research, 31(3):562–580, 2006.

[CSS99] William Cohen, Robert Schapire, and Yoram Singer. Learning to
order things. Journal of Artificial Intelligence Research (JAIR),
10:243–270, 1999.

[CT99] Thomas M. Cover and Joy A. Thomas. Elements of Information
Theory. J. Wiley, 1999.

26



[DSB09] P. Donmez, K. Svore, and C. Burges. On the Local Optimality
of LambdaRank. In Proceedings of ACM Conference on Research
and Development in Information Retrieval (SIGIR), 2009.

[EDMM06] Eyal Even-Dar, Shie Mannor, and Yishay Mansour. Action elim-
ination and stopping conditions for the multi-armed bandit and
reinforcement learning problems. Journal of Machine Learning Re-
search (JMLR), 7:1079–1105, 2006.

[FISS03] Yoav Freund, Raj Iyer, Robert Schapire, and Yoram Singer. An
efficient boosting algorithm for combining preferences. Journal of
Machine Learning Research (JMLR), 4:933–969, 2003.

[FRPU94] Uriel Feige, Prabhakar Raghavan, David Peleg, and Eli Upfal.
Computing with noisy information. SIAM Journal on Comput-
ing, 23(5), 1994.

[HGO99] Ralf Herbrich, Thore Graepel, and Klaus Obermayer. Support
vector learning for ordinal regression. In International Conference
on Artificial Neural Networks (ICANN), 1999.

[Hoe63] Wassily Hoeffding. Probability inequalities for sums of bounded
random variables. Journal of the American Statistical Association,
58:13–30, 1963.

[Joa05] Thorsten Joachims. A support vector method for multivariate
performance measures. In International Conference on Machine
Learning (ICML), 2005.

[KK07] Richard M Karp and Robert Kleinberg. Noisy binary search and its
applications. In ACM-SIAM Symposium on Discrete Algorithms
(SODA), 2007.

[KNMS08] Robert Kleinberg, Alexandru Niculescu-Mizil, and Yogeshwer
Sharma. Regret bounds for sleeping experts and bandits. In Con-
ference on Learning Theory (COLT), 2008.

[Lan08] John Langford. How do we get weak action dependence for learning
with partial observations? http://hunch.net/?p=421, September
2008. Blog entry at Machine Learning (Theory).

[LR85] T. L. Lai and Herbert Robbins. Asymptotically efficient adaptive
allocation rules. Advances in Applied Mathematics, 6:4–22, 1985.

[LS07] Phil Long and Rocco Servedio. Boosting the area under the roc
curve. In Proceedings of Neural Information Processing Systems
(NIPS), 2007.

[LZ07] John Langford and Tong Zhang. The epoch-greedy algorithm for
contextual multi-armed bandits. In Proceedings of Neural Infor-
mation Processing Systems (NIPS), 2007.

27



[MR95] Rajeev Motwani and Prabhakar Raghavan. Randomized Algo-
rithms. Cambridge University Press, 1995.

[MT04] Shie Mannor and John N. Tsitsiklis. The sample complexity of ex-
ploration in the multi-armed bandit problem. Journal of Machine
Learning Research (JMLR), 5:623–648, 2004.

[PACJ07] Sandeep Pandey, Deepak Agarwal, Deepayan Chakrabarti, and
Vanja Josifovski. Bandits for taxonomies: A model-based ap-
proach. In SIAM Conference on Data Mining (SDM), 2007.

[RKJ08] Filip Radlinski, Madhu Kurup, and Thorsten Joachims. How does
clickthrough data reflect retrieval quality? In ACM Conference on
Information and Knowledge Management (CIKM), 2008.

[Rob52] Herbert Robbins. Some Aspects of the Sequential Design of Ex-
periments. Bull. Amer. Math. Soc., 58:527–535, 1952.

[YBKJ09] Yisong Yue, Josef Broder, Robert Kleinberg, and Thorsten
Joachims. The k-armed dueling bandits problem. In Conference
on Learning Theory (COLT), 2009.

[YJ09] Yisong Yue and Thorsten Joachims. Interactively optimizing in-
formation retrieval systems as a dueling bandits problem. In In-
ternational Conference on Machine Learning (ICML), 2009.

Appendix A. Satisfying Modeling Assumptions

The following lemma describes a general family of probabilistic comparison
models and proves that strong stochastic transitivity and stochastic triangle
inequality are both satisfied by this family of models. Note that both the logistic
and Gaussian models described in Section 3.1 are contained within this family
of models.

Lemma 11. Let each bandit bi ∈ {b1 . . . bK} be associated with a distinct real
value µi such that outcomes from comparing two bandits are determined by

P (bi > bj) = σ(µi − µj),

for some transfer function σ. Let σ satisfy the following properties:

• σ is monotonically increasing

• σ(−∞) = 0

• σ(∞) = 1

• σ(x) = 1− σ(−x) (rotation symmetric)

• σ(x) has a single inflection point at σ(0) = 1/2
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Then these probabilistic comparisons satisfy strong stochastic transitivity and
stochastic triangle inequality.

Proof. We begin by noting that that the properties assumed about σ essentialy
indicates that σ behaves like a symmetric cumulative distribution function with
a single point inflection point at σ(0) = 1/2 (i.e., σ is an “S-shaped” curve).

For any triplet of bandits bi � bj � bk, we know that µi > µj > µk. To
show strong stochastic transitivity, we note that σ is monotonically increasing,
Thus we know that σ(µi−µk) ≥ σ(µi−µj) and σ(µi−µk) ≥ σ(µj−µk), which
implies that

εi,k = σ(µi−µk)−1
2
≥ max

{
σ(µi − µj)−

1
2
, σ(µj − µk)− 1

2

}
= max {εi,j , εj,k} .

To show stochastic triangle inequality, we first note that σ(x) is sub-additive,
or concave, for x > 0. Define α ∈ (0, 1) such that (µi − µj) = α(µi − µk) and
(µj − µk) = (1− α)(µi − µk). Then we know from concavity of σ that

ασ(µi − µk) + (1− α)σ(0) ≤ σ(µi − µj),

and also
(1− α)σ(µi − µk) + ασ(0) ≤ σ(µj − µk).

Add the two inequalities above yields

σ(µi − µk) + µ(0) ≤ σ(µi − µj) + σ(µj − µk),

and thus
εi,k ≤ εi,j + εj,k.

Appendix B. Analyzing the Random Walk Model

We first describe a family of measure spaces which will be used to analyze
the coupling between executions of IF and the Random Walk Model.

Definition 2. We define a family of measure spaces M in the following way.
Each point in the sample space is a joint realization of the sequences of random
variables Xrt

ij and Zr
i for every pair of bandits bi and bj, and positive integers

r and t. We will define a joint distribution over the random variables Xrt
ij and

a conditional distribution over the Zr
i variables given the Xrt

ij variables. The
random variables and their distributions are explained in greater detail below.

• For every pair of bandits bi, bj, and positive integer r, there is a sequence of
Bernoulli random variables Xrt

ij (for t = 1, 2, . . .) describing the outcomes
of comparisons in a match played by bi and bj in round r provided that bi

is the incumbent in that round. In particular Xrt
ij = 1 if bi wins the t-th

comparison between bj in round r, and Xrt
ij = 0 if bi loses that comparison.

We will also define the following useful notation to denote prior execution
histories: X r

i is the σ-field generated by the random variables {Xqt
ij : j 6=

i, q < r, t = 1, 2, . . .}.
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• For a fixed i, the random variables Xrt
ij are all mutually independent as

one varies j, r, t, and they have the correct distribution for each pair i, j.
(In other words, the probability of bi beating bj is 1/2 + εij).

• For convenience we also define Y r, for every positive integer r, to denote
the identity of the incumbent in round r+1 (i.e., the bandit that wins round
r) when running algorithm IF with the comparison outcomes specified by
{Xrt

ij }. Note that the value (likewise distribution) of Y r is completely
determined by the values (joint distribution) of Xrt

ij .

• For every bandit bi and positive integer r, there is a random variable Zr
i

taking non-negative integer values, such that the distribution of Y r + Zr
i ,

conditioned on X r
i , is uniform on 1, . . . , i− 1 at every sample point where

Y r−1 ≤ i and IF does not make a mistake in rounds 1, . . . , r. (This will
later be used to show that the Random Walk Model stochastically dominates
any mistake-free execution of IF.)

The values of Xrt
ij completely determine the history of execution of IF6. Our

independence assumptions ensure that the history of play observed by IF has
the correct distribution over histories.

A priori, it is not obvious that measure spaces M satisfying Definition 2
exist; the constraint on the conditional distribution of Y r + Zr

i is non-trivial
but we prove below that it is possible to design a measure space that satisfies this
constraint, i.e. M is not empty. We will then show how any measure space inM
defines a stochastic coupling between the number of rounds required in mistake-
free executions of IF and the length of random walks in the Random Walk Model
G. To begin proving that M is non-empty, we first prove a constraint on the
distribution of the Y r variables.

Lemma 12. For any measure space in M, we have

∀r, ∀1 ≤ j < i :
j∑

j′=1

P (Y r = j′|X r
i , Nr) ≥ j

i− 1
, (B.1)

where bi denotes the incumbent bandit chosen by IF for round r, the Y r and
Xrt

ij variables and the X r
i σ-field are defined as in Definition 2, and Nr denotes

the event that IF does not make a mistake in round r.

Proof. We will prove the following inequality,

∀t ≥ tmin,∀r, ∀1 ≤ j < i :
j∑

j′=1

P (Y r = j′|X r
i , Nrti) ≥ j

i− 1
, (B.2)

6Some of the values Xrt
ij are exposed as IF runs and schedules matches. Other values never

get exposed. In particular, if bi is not the incumbent in round r, then the values Xrt
ij have no

bearing on the history of play observed by IF.
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where tmin denotes the minimum number of comparisons required for IF to
determine a winner, and Nrti denotes the event that IF does not make a mistake
in round r, that bi is the incumbent in that round, and that IF makes exactly
t comparisons between bi and each other remaining bandit in round r. Since
(B.2) will be shown to apply for all feasible t, i, then (B.1) will also hold.

It suffices to show that

∀1 ≤ j < k < i : P (Y r = j|X r
i , Nrti) ≥ P (Y r = k|X r

i , Nrti), (B.3)

since then (B.2) follows from iteratively applying the pigeonhole principle (for
j = 1, . . . , i− 1), and noting that

i−1∑
j′=1

P (Y r = j′|X r
i , Nrti) = 1.

Let U(i, k, r, t|X r
i ) denote the collection of comparison sequences of length t

in round r between the incumbent bi and each other remaining bj which results
in bk being declared the winner after t comparisons. In other words, an element
in U(i, k, r, t|X r

i ) consists of a realization of each Xt′r
ij for incumbent bi, all

remaining bj , and time steps 1 ≤ t′ ≤ t. It is straightforward to see that

P (Y r = k|X r
i , Nrti) = P (U(i, k, r, t|X r

i )|X r
i , Nrti).

We define a bijection between U(i, j, r, t|X r
i ) and U(i, k, r, t|X r

i ) for j < k
such that P (U(i, j, r, t|X r

i )|X r
i , Nrt) ≥ P (U(i, k, r, t|X r

i )|X r
i , Nrti), which di-

rectly implies (B.3). Each uk ∈ U(i, k, r, t|X r
i , Nrti) is mapped to the corre-

sponding point uj ∈ U(i, j, r, t|X r
i , Nrti) that consists of the same sequences of

comparisons as uk, except that the comparison sequences involving bj and bk

are swapped (implying that bj is declared the winner).
It remains to show that P (uj |X r

i , Nrti) ≥ P (uk|X r
i , Nrti) for all uj , uk pair-

ings in the bijection. In the sequences of comparisons defined by uk, let

A =
t∑

t′=1

Xrt′

ik and B =
t∑

t′=1

Xrt′

ij ,

where A > B. Under the corresponding uj , the two summations are reversed,

B =
t∑

t′=1

Xrt′

ik and A =
t∑

t′=1

Xrt′

ij ,

and all other sequences of variables Xrt′

ii′ for i′ 6= j, i′ 6= k remain the same. We
also know that P (Xrt

ik) ≤ P (Xrt
ij ), since bk is inferior to bj . Let p = P (Xrt

ij )
and q = P (Xrt

ik). Since all the Xrt′

ii′ variables are mutually independent, we can
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write the ratio of the conditional probabilities of uj and uk as

P (uj |X r
i , Nrti)

P (uk|X r
i , Nrti)

=
P (
∑t′

t=1 Xrt
ij = A)P (

∑t′

t=1 Xrt
ik = B)

P (
∑t′

t=1 Xrt
ij = B)P (

∑t′

t=1 Xrt
ik = A)

=
pA(1− p)t′−AqB(1− q)t′−B

pB(1− p)t′−BqA(1− q)t′−A

=
pA−B(1− q)A−B

qA−B(1− p)A−B
≥ 1

where the first equality follows from noting that all comparisons are independent
and canceling out like terms (i.e., the realizations of the comparisons for other
Xrt

ii′ where i′ 6= j and i′ 6= k), and the last inequality follows from noting that
A > B and p > q.

Corollary 2. For the setting described in Lemma 12, we also have

∀r, ∀1 ≤ j < i :
j∑

j′=1

P (Y r = j′|X r
i , Nr) ≥ j

i′ − 1
,

where i′ ≥ i.

Lemma 13. The family of measure spaces M defined in Definition 2 is non-
empty.

Proof. We will use the notation for Xrt
ij , Y r, Zr

i ,X r
i as described in Definition 2.

We will show that it is possible to construct a distribution on the non-negative
random variables Zr

i which satisfies the requirements of Definition 2. Since we
are conditioning on Xqt

ij for all q < r, then the value of Y r−1 is fixed (i.e., we
know who the incumbent is in round r). We will construct Zr

i based on the
following two cases.

Case 1: IF does not make a mistake in round r and Y r−1 ≤ i (meaning the
incumbent during round r was bi). We will use the following flow network to
construct the conditional distribution of Y r + Zr

i (given X r
i and Nr),

• source s and sink t

• vertices u1, . . . , ui−1

• vertices v1, . . . , vi−1

• edges from s to each uj with capacity P (Y r = j|X r
i , Nr)

• edges from each uj to vk where k ≥ j with infinite capacity

• edges from each vk to t with capacity 1/(i− 1)
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Lemma 12 and Corollary 2 imply that the minimum s-t cut of this network
has capacity 1, and consequently the maximum s-t flow has value 1. In any
maximum flow, each edge (s, uj) and each edge (vj , t) (for 1 ≤ j ≤ i− 1) must
be saturated. Given a maximum flow, we can interpret the flow on the edge from
uj to vk to be the joint conditional probability P (Y r = j, Zr

i = k− j | X r
i , Nr),

from which we can recover the conditional distribution of Zr
i given X r

i and Nr.
The fact that the conditional distribution of Y r + Zr

i is uniform on 1, . . . , i− 1,
given X r

i , Nr, follows from the fact that the flow from vk to t is exactly 1/(i−1)
for every k.

Case 2: IF does make a mistake in round r or Y r−1 > i. Then we set Zr
i

to some arbitrary non-negative integer, e.g., 0.
Thus, we have shown that there exists a feasible probability distribution on

the Zr
i variables which satisfies the requirements of Definition 2, which implies

that M is non-empty.

Lemma 14. There exists a stochastic coupling between IF and the Random
Walk Model such that the number of rounds in mistake-free executions of IF
is stochastically dominated by the length of random walks in the Random Walk
Model.

Proof. We can take any measure space in M to construct our stochastic cou-
pling, and we know from Lemma 13 that at least one such measure space exists.
There is one sample point for every possible joint outcome of the random vari-
ables Xrt

ij and Zr
i . The execution of IF is determined by the Xrt

ij variables.
Consider any execution of IF that is mistake-free through rounds 1, . . . , s. The
analogous execution of the Random Walk Model is determined by looking at
the sequence of incumbents when one runs a “perturbed” version of IF. The
perturbation consists to taking the identity of the incumbent in round r+1 (for
every r = 1, . . . , s) and modifying it by adding Zr

i (where bi is the incumbent of
“perturbed” IF in round r), and then executing round r+1 using the perturbed
incumbent instead of the one that would ordinarily be chosen by IF. Both IF
and “perturbed” IF start with the same initial incumbent at the beginning of
round 1 chosen uniformly from 1, . . . ,K.

Let br and b̃r be the incumbents chosen by IF and the analogous “perturbed”
IF, respectively, at round r (note that br = bi′ where i′ = Y r−1). Then it suffices
to show that any mistake-free execution of IF satisfies br � b̃r for all r > 0. It
is straightforward to see that this stochastic coupling holds from the definition
of the Y r and Zr

i variables in Definition 2, so long the initial condition b1 � b̃1

holds (and b1 = b̃1 by definition).
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