
Distance Oracles for Stretch Less Than 2

Rachit Agarwal

Department of Computer Science,
University of Illinois at Urbana-Champaign

agarwa16@illinois.edu

P. Brighten Godfrey

Department of Computer Science,
University of Illinois at Urbana-Champaign

pbg@illinois.edu

Abstract

We present distance oracles for weighted undirected graphs
that return distances of stretch less than 2. For the realistic
case of sparse graphs, our distance oracles exhibit a smooth
three-way trade-off between space, stretch and query time
— a phenomenon that does not occur in dense graphs. In
particular, for any positive integer t and for any 1 ≤ α ≤ n,
our distance oracle is of size O(m + n2/α) and returns
distances of stretch at most (1 + 2

t+1
) in time O((αµ)t),

where µ = 2m/n is the average degree of the graph. The
query time can be further reduced to O((α + µ)t) at the
expense of a small additive stretch.

1 Introduction

Distance oracles are compact data structures that
can be efficiently queried to compute the distance
between any given source-destination pair in a graph.
A distance oracle is said to return stretch-s distances
if, for a given pair of vertices at distance d, the
returned distance δ satisfies d ≤ δ ≤ s · d. There
is a trade-off between the size of the oracle and
its stretch; this trade-off is now well understood for
general undirected graphs. In particular, there exist
distance oracles of size Θ(n1.5) that return distances
of stretch 3 [17], and a lower bound of Thorup and
Zwick [17] shows that oracles that return distances
of stretch less than 3 must have size Ω(n2). However,
the hard instances used to prove this lower bound
are extremely dense graphs: the proof shows that to
achieve stretch less than 3, the size of the oracle
must be lower bounded by the number of edges in
a graph with Θ(n2) edges. Essentially, the bound
shows the existence of a dense enough graph that is
incompressible.

Can lower stretch be achieved using sub-quadratic
space in sparse1 graphs? This question is both
interesting and important for two reasons. First, far
from being a narrow special case of the problem,
sparse graphs are the most relevant case. Nearly all
large real-world networks are sparse, including road
networks [14], social networks [4], the router-level
Internet graph [9] and the Autonomous System-level
Internet graph [8], as well as networks like expander
graphs that are important in many settings; see [2]

1We say that a graph is sparse if it has m = o(n2) edges.

for numerical examples of the sparsity of a number
of networks. These include nearly all networks
with real-world applications of distance oracles — in
social networks [1,13], personalized search [13,18],
network routing [2, 16], etc. In this sense, oracles
that match the lower bound of [17] are optimal only
for the obscure case of extremely dense graphs.

The second reason sparse graphs are interesting
is that the mathematical structure of the question
changes dramatically in the case of sparse graphs.
Taking the extreme case of m = Õ(n) edges, one can
trivially produce an oracle of size Õ(n) that returns
exact shortest paths (stretch 1), simply by storing the
input graph and running Dijkstra’s algorithm on each
query. This, however, takes Õ(n) time per query. Thus,
in the dense case, the focus is on retaining sufficient
information to retrieve low stretch distances after a
“lossy compression” of the graph. In the sparse case,
the input graph can be stored in relatively little space,
and the trade-off with query time becomes critical.

Relatively little is known about the space-stretch-
time trade-off for sparse graphs. Pǎtraşcu and Roddity
[11] designed a stretch-2, constant-time oracle of size
O(n4/3m1/3). Agarwal et al. [2,3] explored the trade-
off between size and query time; their lowest-stretch
oracle is of size O(m + nm1−ϵ) and returns stretch-
2 distances in O(mϵ) time. No non-trivial distance
oracle that returns distances of stretch less than 2 in
sparse weighted graphs is known.

In this paper, we present the first distance ora-
cle that returns distances of stretch less than 2 for
weighted graphs with m = o(n2) edges. For the
realistic case of sparse graphs, our distance oracle
achieves a smooth three-way trade-off between space,
stretch and query time. Our main theorem is as
follows.

Theorem 1.1. Let G be any weighted graph with n
vertices and m = O(nµ) edges with non-negative
weights. Then, for any 1 ≤ α ≤ n and any inte-
ger t > 0, we can construct a distance oracle of
expected size O(m+n2/α) and a query algorithm that
returns distances of stretch (1+ 2

t+1
) in expected time

O((αµ)t + (αµ)t−1α logα).

agarwa16@illinois.edu
pbg@illinois.edu

For instance, consider graphs with m = Õ(n)
edges and fix the space to be Õ(n7/4). Then our
oracle retrieves stretch-2 distances in O(n1/4) time
and stretch-1.67 distances in O(

#
n) time.

More generally, the parameters α and t in our
result give a smooth tradeoff between query time
and stretch (for fixed t) or between query time and
size (for fixed α). The theorem also implies that on
sufficiently sparse graphs, it is possible to retrieve
distances with stretch arbitrarily close to 1 in sub-
quadratic space and sub-linear query time. The query
time in Theorem 1.1 can be further reduced using a
small additive stretch, that depends only on t. We
describe this and other special-case results in §6.

Before delving deeper, we remark on what we be-
lieve differentiates our approach from previous work.
The main focus of [2, 3, 11, 17] was on designing
(elegant and compact) distance oracles to represent
the input graph; their query algorithms for retrieving
distances were rather straightforward. In contrast,
the focus of our work is a query algorithm that allows
us to achieve a more general space-stretch-time trade-
off and retrieve distances of stretch less than 2;
our distance oracle, on the other hand, is closely
related to that of [2,17] with a simple (yet powerful)
modification to facilitate our query algorithm. In
particular, our main tool is a query algorithm that
recursively queries a stretch-3 distance oracle of size
O(m+ n2/α); with each successive query, the stretch
improves and the query time increases. The main
challenge is to improve stretch without significantly
increasing query time, which we accomplish by per-
forming recursive queries in a structured fashion.

2 Related work

Lower bounds for distance oracles. For general
weighted undirected graphs, Thorup and Zwick [17]
proved that distance oracles that return distances of
stretch 2 and 3 must require Ω(n2) and Ω(n3/2) space.
Their lower bounds, as discussed earlier, hold only for
dense graphs and do not apply to our case.

Sommer et al. [15] proved that the size of
stretch-s time-t distance oracles is lower bounded
by n1+Ω(1/st); that is, for (constant stretch and)
constant query time, any oracle must have super-
linear size for graphs with m = Õ(n) edges. For
graphs with m > Ω̃(n) and/or super-constant query
time, their bound does not have any meaningful
interpretation. Conditioned on a conjecture on
hardness of set intersection queries, Pǎtraşcu and
Roditty [11] strengthened their result for the special
case of stretch-2 oracles by proving a lower bound of
Ω(n
#

m) on the size of oracles with constant query
time.

There are reasons to believe that it may be hard
to improve upon these lower bounds unconditionally
[11], and realistically, upper bounds seem to be
the only way to make progress on the problem. A
particularly compelling scenario is the case ofΩ(log n)
query time, like ours, for which no non-trivial lower
bounds are known and it is conceivable that distance
oracles with smaller stretch and size exist.

Upper bounds for weighted graphs. For general
weighted undirected graphs, Thorup and Zwick [17]
designed a distance oracle, that for any integer k ≥ 2,
is of size O(kn1+1/k) and returns stretch-(2k − 1)
distances in O(k) time; the construction time of their
oracle is O(mn1/k). Subsequent research improved
the construction time [5–7, 19] and the query time
[10]. Designing oracles with reduced size and/or
stretch turned out to be a much harder problem,
precisely due to the above lower bounds. Indeed,
these results may be quite far from optimal for the
realistic case of sparse graphs.

For the case of sparse graphs, Pǎtraşcu and Rod-
dity [11] considered the problem of designing dis-
tance oracles with constant query time: their oracle
is of size O(n4/3m1/3) and returns stretch-2 distances.
Agarwal et al. [2, 3] designed distance oracles with
super-constant query time and explored the trade-off
between size and query time. For instance, on graphs
with m = Õ(n) edges, a special case of the distance
oracle in [2] returns stretch-2 distances using Õ(n2−ϵ)
space and O(nϵ) query time — for ϵ = 0.5, this
requires less space but higher query time than [11].

Recently, Porat and Roditty [12] gave a stretch-
less-than-2 oracle for the special case of unweighted
graphs. We give a detailed comparison below but note
that for sparse weighted graphs, no non-trivial oracle
for stretch less than 2 is known; even for unweighted
graphs, we significantly improve upon their results for
each point in the space-stretch-time trade-off space.

Comparison with Porat-Roditty oracle [12]. Per-
haps, the work most closely related to ours is that of
Porat and Roditty: their oracle is of size O(nm1−ϵ)
and returns distances of stretch 1+2ϵ

1−2ϵ
in time O(m1−ϵ)

for the special case of unweighted graphs.

There are three main aspects in which our oracle
of Theorem 1.1 improves upon their oracle. First, we
significantly improve upon their results for each point
in the space-stretch-time trade-off space. For instance,
consider graphs with m = Õ(n) edges and let α =
nϵ . Then, by setting ϵ = (1/(2t + 4)), our oracle
has the same stretch and space as their oracle but
requires

#
n ·nt/(2t+4) less query time — a polynomial

reduction in the query time for each value of t. The
improvement increases with the density of the graph.

Second, unlike their distance oracle, our oracle
works for general weighted graphs. Finally, their
distance oracle exhibits the space-stretch trade-off as
in classical distance oracles for dense graphs [17];
once the stretch is fixed, the space and query time
are fixed. Our oracle exhibits a more general three-
way trade-off highlighting a fundamental difference
between the dense and the sparse cases.

3 Overview of our technique

We start by giving a high level overview of our
technique. To do so, let us briefly recall one of the
most frequently used techniques to design distance
oracles [2, 3, 11, 17]. Typically, the construction of
distance oracles starts by selecting a subset of vertices
L known as “landmark vertices”. The oracle stores
the distance from each vertex in L to each other
vertex in the graph. Next, each vertex u is assigned a
landmark vertex ℓ(u) ∈ L; this is the vertex ℓ ∈ L that
minimized the distance d(u,ℓ), ties broken arbitrarily.
Finally, the notion of “balls” is used — the ball of
any vertex u is the set of all vertices w for which
the distance between u and w is strictly less than the
distance between u and ℓ(u). The distance from each
vertex u to each vertex in B(u) is either stored in the
oracle [2,3,11,17] or is computed on the fly [2,3].

In order to retrieve low stretch distances, a typical
query algorithm works as follows. When queried
for the distance between two vertices u, v, the exact
distance is returned if u ∈ B(v) or if v ∈ B(u); if not,
the distance d(u,ℓ(u))+ d(ℓ(u), v) is returned. In the
latter case, by triangle inequality, we get that the re-
turned distance is at most 2·d(u,ℓ(u))+d(u, v), which
is at most 2 · d(u,ℓ(u)) more than the exact distance.
Hence, the stretch is given by 1+ 2d(u,ℓ(u))/d(u, v).
For instance, if d(u,ℓ(u)) ≈ d(u, v), we get roughly
stretch 3 [17].

Our technique builds upon the above technique
using two observations. First, given the above stretch-
3 oracle, it may be possible to retrieve distances of
lower stretch by carefully querying the oracle. More
specifically, let u′ be some vertex along the shortest
path between u and v and suppose we know the exact
distance d(u,u′). We can then query the oracle for
distance between u′ and v and return the distance
d(u,u′) + δ(u′, v). As above, the exact distance is
returned if u′ ∈ B(v) or v ∈ B(u′); if not, the returned
distance is d(u,u′) + d(u′,ℓ(u′)) + d(ℓ(u′), v). Using
triangle inequality, we get that the returned distance
is at most d(u,u′) + 2 · d(u′,ℓ(u′)) + d(u′, v) = 2 ·
d(u′,ℓ(u′)) + d(u, v). If d(u′,ℓ(u′)) < d(u,ℓ(u)), this
in fact leads to a better stretch; finding such a vertex
u′ and computing the distance d(u,u′) takes some
time, but leads to improved stretch.

Our second observation is related to finding a
good candidate vertex u′ for querying the oracle.
Recall that the stretch of the distance returned de-
pends on d(u′,ℓ(u′)), or more precisely, on the ratio
d(u′,ℓ(u′))/d(u, v). The lower this ratio, the lower
is the stretch of the distance returned. Hence, we
not only want to find a vertex u′ along the shortest
path, but also a vertex with a small “ball radius”
d(u′,ℓ(u′)). If we can find a vertex u′ such that
d(u′,ℓ(u′)) ≤ d(u, v)/(t + 1), we will get the desired
bound on stretch. We will show that such a vertex
always exists and can be found within the desired
bound on the query time.

The main challenge in exploiting the above two
observations is that of finding a good candidate vertex
u′ — one that lies along the shortest path between
u and v and allows us to bound d(u′,ℓ(u′))/d(u, v).
Indeed, this information is not stored within the
oracle and that is where we need to do most of the
work. The rest of this section provides some low level
details on efficiently finding such a vertex u′.

We start by noting that there may be multiple
candidate vertices for u′; for instance, since u ∈ B(u),
there exists at least one such candidate vertex among
the neighbors of vertices in B(u)2. To find this vertex,
we grow a partial shortest path tree around the source
u until all the neighbors of B(u) have been explored
(see Figure 1(a)); alternative algorithms for finding
these candidate vertices may grow shortest path trees
around v (as in Figure 1(b)) or even around both u
and v (as in Figure 1(c)). Growing these shortest path
trees contribute to the query time of our algorithm.

Here, we need to resolve the issue of the source
and/or the destination having extremely dense neigh-
borhoods — if O(m) edges need to be explored to
grow this (partial) shortest path tree, this may lead
to O(m) worst-case query time. In order to resolve
this problem, we use a result from [2, 3], which
shows that designing distance oracles for graphs
with average degree µ is no harder than that for µ-
degree bounded graphs. In particular, they present a
technique that takes an oracle for µ-degree bounded
graphs and converts it into an oracle for graphs with
average degree µ with no loss in stretch and at most a
constant factor increase in size and query time. This
allows us to not worry about high-degree vertices by
focusing on designing distance oracles for µ-degree
bounded graphs.

2Note that at least one such vertex also exists among the
neighbors of vertices in B(v). Indeed, this vertex may be a better
candidate for being the vertex u′. It turns out that our desired
bound on stretch can be proved irrespective of which of these
vertices is chosen as the vertex u′ but it may be possible to achieve
an improved bound on stretch (theoretically or empirically) by
using a more sophisticated algorithm for selecting this vertex u′.

u v

(a) Exploring the neighborhood of u in
search of candidate vertex u′

u v

(b) Exploring the neighborhood of v
in search of candidate vertex u′

u v

(c) Exploring the neighborhood of u and v in
search of candidate vertex u′

Figure 1. Various possibilities of exploring the neighborhoods of the source and the destination in search of candidate vertex u′.

We now give the high-level idea of proving the
desired bound of (1+2/(t+1)) on stretch. To achieve
this bound, we use a recursive query algorithm. Once
we have found a good candidate vertex u′ among the
neighbors of vertices in B(u), we recurse; that is, we
find a good candidate vertex u′′ among the neighbors
of vertices in B(u′) and so on. Once the depth of
recursion has reached t, we are able to show that
among all the candidate vertices explored during the
recursive queries, we would have found a vertex w
along the shortest path between u and v such that
d(w,ℓ(w))≤ d(u, v)/(t+1). As discussed earlier, this
leads to the desired bound on stretch.

The space-stretch-time trade-off. Finally, we
comment on the three-way trade-off between space,
stretch and query time in our distance oracle.

For any fixed stretch, our distance oracles achieve
the trade-off between space and query time by way
of construction. Unlike the construction algorithms
in [11, 17], the size of the landmark set L in our
oracles is controlled by a parameter 1 ≤ α ≤ n. As we
increase the size of L, the size of the oracle increases
since it stores the distance from each vertex in L to
each other vertex. On the other hand, as the size of
L increases, fewer edges need to be explored while
growing the shortest path trees in each recursive step,
leading to a smaller query time. Hence, for any fixed
stretch, we get a smooth space-time trade-off using
the parameter α.

The other spectrum of the trade-off is achieved by
using the recursive query algorithm — for a fixed size
of the oracle, we get a trade-off between stretch and
query time. Fix some 1 ≤ α ≤ n and hence, the size
of the oracle. Then, we get a stretch-time trade-off by
controlling the depth of recursion — the lower the
desired stretch, the higher the query time. This is
due to the fact that we are simply querying the same
data structure (recursively) and hence, the size of the
oracle is fixed; the query algorithm simply allows us
to trade-off query time for improved stretch.

4 A distance oracle for stretch 3

In this section, we construct a distance oracle that re-
turns stretch-3 distances for any weighted graph. Our
oracle is similar in spirit to the oracles of [2,17] with
some simple, yet powerful modifications. We give
a randomized construction of the oracle; our query
algorithm is deterministic and hence, using Chernoff
bound, all the results hold with high probability with
an extra logarithmic factor. In particular, we prove
the following lemma:

Lemma 4.1. Let G be any weighted graph with n
vertices and m = O(nµ) edges with non-negative
weights. Then, for any 1 ≤ α ≤ n, we can construct
a distance oracle of expected size O(m+ n2/α) and a
query algorithm that computes stretch-3 distances in
expected time O(αµ+α logα).

Let L and V ′ be a given subset of vertices. Then,
for any vertex v, we define the following:

• Nearest vertex in set L — ℓ(v): the vertex a ∈ L
that minimizes d(v, a), ties broken arbitrarily.

• Neighbor set N(V ′): the set of all the neighbors
of vertices in V ′.

• Ball of a vertex B(v): the set of vertices w ∈ V
for which d(v, w)< d(v,ℓ(v)).

• Ball radius rv: the distance from v to its nearest
neighbor in L, that is, d(v,ℓ(v)).

• Vicinity of a vertex Γ(v): the set of vertices in
B(v)∪ N(B(v)).

• Distance-via-ball from v to w — d ′v(w): cost
of the least-cost path from v to w such that all
intermediate vertices on this path are contained
in B(v); that is:

d ′v(w) = min
x∈N (w)∩B(v)

{d(v, x) +weight of edge(x , w)}

The following result from [2, 3] will be useful to
succinctly describe our results:

Lemma 4.2 ([2,3]). Let G be any weighted undi-
rected graph with n vertices, m edges and average
degree µ = 2m/n. Then, one can construct an
equivalent graph with maximum degree ⌈µ+2⌉, such
that the new graph has 2n vertices, m+ n edges, and
has the same distances between any pair of vertices
as the distance in the original graph between the
corresponding vertices.

The reduction that leads to the above result does
introduce some new zero-weight edges in the graph.
Hence, the above implies that as long as the stretch
bound of the query algorithm does not depend on the
edge weights, given a graph with average degree µ,
we can replace it with a graph with maximum degree
no more than ⌈µ + 2⌉, and build the oracle on this
new graph instead of the original graph. Using the
above result, we can henceforth focus on degree-
bounded graphs. To this end, let G = (V, E) be a µ-
degree bounded graph where each vertex has at most
µ= 2m/n neighbors.

Constructing the oracle. Fix some 1 ≤ α ≤ n. The
construction begins by creating a set of “landmark”
vertices by sampling each vertex independently at
random with probability 1/α. Denote by L the set
of landmark vertices. The distance oracle stores, for
each v ∈ V , a hash table storing the exact distance to
each vertex in L; it also stores the nearest neighbor
ℓ(v) and the ball radius rv . In addition, the distance
oracle stores the entire graph — for each vertex v, the
set of edges (and their weights) incident on v.

Query algorithm. We now show how to retrieve
stretch-3 distances from the above distance oracle.
When queried for the distance between vertices u, v,
the algorithm runs modified shortest-path algorithms
from u and from v that stop once the distances to
all vertices in B(u) and B(v), respectively, have been
computed. These distances are stored in a hash
table temporarily. To answer the query, the algorithm
works in three steps: (1) it checks if v ∈ B(u) or
u ∈ B(v) — if any of these is true, the exact distance
is returned using the hash table; (2) if the first step
is unsuccessful, it checks if ru = 0 or rv = 0 — if
one of these is zero (say ru), the algorithm returns
d(u,ℓ(u)) + d(v,ℓ(u)), which is easily proved to be
exact by using triangle inequality; and (3) if the first
two checks are unsuccessful, the algorithm returns
d(u,ℓ(u)) + d(v,ℓ(u)), which is of stretch 3 using an
essentially unmodified proof of [17].

The above distance oracle and the query algo-
rithm are similar to that of the construction of Thorup
and Zwick [17]with three main differences. First, our
query algorithm computes balls and corresponding
distances to vertices in the ball on the fly; second, to
allow computation of these balls and distances on the
fly, the graph is stored within the oracle; and third,
the sizes of the balls are controlled by the parameter
α. It is this specific construction that allows us to use
a recursive query algorithm to retrieve distances of
lower stretch without increasing the size of the oracle.
The bounds on size of the oracle and the query time
are easily proved; see Appendix A.

Next, we claim two properties that the above
distance oracle (and the query algorithm) guarantee:

Claim 4.3. For any pair of vertices u, v ∈ V and any
β > 1, the above query algorithm either returns the
exact distance, or there exists a vertex w ∈ Γ(u)\B(u)
such that: d(u, w) + β · d(w, v)< β · d(u, v).

The proof of the above claim (see Appendix A)
follows by noting that the algorithm returns the exact
distance if ru = 0. Next, we will need the following
claim which shows that if the vicinities of a pair of
vertices u, v ∈ V do not intersect, we can compute a
lower bound on the distance between u and v:

Claim 4.4. For any pair of vertices u, v ∈ V , if Γ(u)∩
Γ(v) = ,, we have that d(u, v)≥ ru + rv .

Claim 4.4 has been explicitly used in [2, 11] for
designing oracles of stretch 2 and larger. In fact, a
stronger result from [3] show that the same lower
bound on d(u, v) holds even if B(u) ∩ Γ(v) ̸= ,.
For sake of completeness, we provide a proof in
Appendix A.

We will extensively use the above two claims
throughout the rest of the paper. In particular, we will
query the distance oracle of Lemma 4.1 recursively in
a structured fashion; in each recursive step, we will
argue that when queried for distance between a pair
of vertices u, v ∈ V , the query algorithm either returns
the exact distance between u and v or we can find a
vertex w ∈ Γ(u) such that d(x , v) is strictly less than
d(u, v) (using Claim 4.3). Once such a vertex w is
found, we will use it along with Claim 4.4 to lower
bound the distance between u and v.

To bound the query time of our algorithm, we will
need the following claim (proof in Appendix A):

Claim 4.5. Let G = (V, E) be any weighted µ-degree
bounded graph. Then, for any vertex v, given the
distance oracle of Lemma 4.1 and given a hash table
containing distances to each vertex in B(v), a hash
table containing distance-via-ball to each vertex in
Γ(v) can be constructed in O(|B(v)|·µ) = O(αµ) time.

Algorithm 1 Query (u, v, t): the query algorithm.

1: Compute d(u, x) for each x ∈ B(u) and compute d(v, y) for each y ∈ B(v)

2: Compute d ′u(x) for each x ∈ Γ(u) and compute d ′v(y) for each y ∈ Γ(v)
3: If v ∈ B(u) or u ∈ B(v)
4: return d(u, v)

5: If ru ≥ rv

6: q1← u; q2← v
7: Else
8: q1← v; q2← u

9: If t > 1
10: return minx∈Γ(q1)\B(q1)

!

d ′q1
(x) +QUERY(x ,q2, t − 1)

"

11: γ1←∞, γ2←∞
12: If Γ(q1)∩Γ(q2) ̸= ,
13: γ1←minx∈Γ(q1)∩Γ(q2)

!

d ′q1
(x) + d ′q2

(x)
"

14: γ2← d(q2,ℓ(q2)) + d(q1,ℓ(q2))
15: return min{γ1,γ2}

5 A recursive query algorithm

In this section, we present a recursive query algorithm
and use it along with the distance oracle of Lemma 4.1
to prove Theorem 1.1. Recall that the query algorithm
of Lemma 4.1 computes stretch-3 distances in O(αµ)
time. In order to compute distances with improved
stretch, our query algorithm recursively queries the
oracle; with each query, the stretch improves and
the query time increases. The main challenge is to
improve stretch without significantly increasing query
time, which we accomplish by performing recursive
queries in a carefully structured fashion.

The high level idea of the query algorithm is as
follows (see Algorithm 1). The input to the algorithm
is a pair of vertices u, v ∈ V and a positive integer
t that determines the depth of recursion (and hence,
the desired stretch). This depth is specified at the time
of querying and each query can have a different depth
(and hence, stretch and query time guarantees).

In each recursive step, the algorithm executes as
follows. Given a pair of vertices u, v and an integer
t, the first two steps are executed similar to the query
algorithm of Lemma 4.1. The difference lies in Step
(3) — if none of the conditions in first two steps is
satisfied, the algorithm checks if the desired depth of
recursion is reached or not. If the desired depth of
recursion is not yet reached, the algorithm selects
one of the vertices out of u and v (we return, in
a moment, to the question of how this selection is
done); call the selected vertex q1 and the other vertex
q2. The algorithm then recursively initiates multiple
queries, each asking for the distance between q2 and
one of the vertices x ∈ Γ(q1); the result of each such

query is added to the corresponding distance d ′q1
(x)

and the minimum of these distances is returned.

We now return to the question of how the algo-
rithm selects the vertex q1 (out of u and v) to initiate
the next level of recursive queries. As discussed in §3,
various strategies exist (for instance, three strategies
of Figure 1); we discuss one of such strategies that
recurses through the vertices in the vicinity of the ver-
tex with larger ball radius. The intuition behind using
this particular strategy is that by recursing through
the vertex with larger ball radius, we may be able to
get a better lower bound on the distance between the
source and the destination (using Claim 4.4). Hence,
we use ball radii to guide our selection of vertex q1

out of u and v.

We describe this using an example: suppose that
the query is performed on a source-destination pair
(u, v) and suppose we always query the vertices in
the vicinity of the source (u for this pair). Consider
the shortest path between u and v shown in Figure 2.
Starting with (u, v) as the source and the destination,
if we want to get a good lower bound (via Claim 4.4)
on the distance between the source and the desti-
nation, (one of) the best order(s) to proceed would
be (u, v) → (x1, v) → (v, x2) → (x4, x2) → (x3, x2);
that is, in each step, search the vicinity of the vertex
with larger ball radius. Hence, in each recursive step,
we “swap” the source and the destination vertices
depending on whose ball radius is larger. This leads
to the desired bound on the stretch.

The last question to settle is the execution of
the algorithm when the desired depth of recursion
has been reached. If none of the pairs of vertices

u
x1 x2 x4x3

v

Figure 2. An illustration of the idea of “swapping” of vertices used in the query algorithm. The path shown is the shortest path between u
and v; the circles around the vertices denote their balls.

queried during the execution of the algorithm satisfies
the conditions for retrieving exact distances (line 3
and line 4 in Algorithm 1), the last query has to
retrieve the distance via the landmark vertex of one
of the vertices. Referring to Figure 2 again, once we
query for distance between (x2, x3), which one should
return the distance via its landmark vertex? Consid-
ering the worst-case scenario, since d(x2,ℓ(x2)) <
d(x3,ℓ(x3)), it makes sense to retrieve the distance
via the landmark of the vertex with smaller ball
radius. With such a strict ordering of querying the
vertices, we get the desired bound on the stretch for
the distance retrieved by the query algorithm.

5.1 Formal Analysis of the query algorithm In
the rest of the section, we assume that the query
algorithm does not return the exact distance and
terminates with some vertex returning the distance
via its landmark vertex. We start with a simple
observation:

Observation 5.1. Each successive query contains a
vertex from the previous query. Furthermore, the ball
radius of the retained vertex is smaller than the ball
radius of the dropped vertex.

Suppose we perform a depth-t recursive query
between vertices u and v. Let x1, x2, . . . , xt , xt+1 be
the set of vertices on the recursion path (in some
arbitrary order) along which the final distance is
returned. Note that the number of vertices in the
set of queries is exactly one more than the depth of
recursion. Without loss of generality, assume that
the final query was performed on the pair of vertices
xt , xt+1 and xt+1 returns the distance via its landmark
vertex ℓ(xt+1).

Then, we make the following claim, a proof of
which is relatively straightforward using Observa-
tion 5.1:

Claim 5.2. Let x1, x2, . . . , xt , xt+1 be the set of ver-
tices on the recursion path (in some arbitrary order)
along which the final distance is returned and let xt+1

be the vertex that returns the distance in the last
recursive call. Then, we have that: rxt+1

≤ rxi
, ∀i ≤ t.

Recall from the statement of Claim 4.4 that if the
vicinities of two vertices do not intersect, it is possible
to lower bound the exact distance between the two
vertices. The following lemma generalizes the result
of Claim 4.4 to the case of algorithm performing
recursive queries with depth-t:

Lemma 5.3. Let x1, x2, . . . , xt , xt+1 be the set of ver-
tices on the recursion path (in some arbitrary order)
along which the final distance is returned and let
xt+1 be the vertex that returns the distance in the
last recursive call. Then, either the query algorithm
returns the exact distance or the distance between
the source and the destination is bounded by below
as d(u, v) ≥ rx1

+ · · ·+ rxt
+ rxt+1

≥ (t + 1)rxt+1
.

Proof: Assume that the vertices on the recursion path
along which the final distance is returned lie on the
shortest path between u and v; indeed, if this were
not the case, the stretch can only be smaller and
the analysis will only give us a pessimistic bound.
Consider the case when the query algorithm does not
return the exact distance between u and v. Consider
some query Query(x , y, i) and without loss of gener-
ality, assume that the next query is Query(x ′, y, i − 1)
for some x ′ ∈ Γ(x)\B(x). Then, since x ′ ∈ Γ(x)\B(x)
and x ′ lies along the shortest path between x and y ,
we have that (recall, rx is defined to be the radius of
the ball B(x))

d(x , y) = d(x , x ′) + d(x ′, y)≥ rx + d(x ′, y)

Using the above expression on the pair of vertices
along the recursion path for Query(u, v, t) and assum-
ing that the last query is performed on pair of vertices
xt , xt+1, we get the following expression as a lower
bound on the distance between u and v:

d(u, v)≥ rx1
+ rx2

+ · · ·+ rxt−1
+ d(xt , xt+1)

Let P = (xt , w1, w2, . . . , xt+1) be the shortest path
between xt and xt+1 and let w = wi0

where i0 =
max{i|wi−1 ∈ P∩B(xt)}. Then, if the query algorithm
does not return the exact distance, we have that
w /∈ Γ(xt+1) since otherwise we get the exact distance
(using line 13 of Algorithm 1). Since w /∈ Γ(xt+1),

δ(u, v) = d(u, v)− d(xt , xt+1) +δ(xt , xt+1)(1)

= d(u, v)− d(xt , xt+1) + d(xt+1,ℓ(xt+1)) + d(ℓ(xt+1), xt)(2)

≤ d(u, v)− d(xt , xt+1) + d(xt+1,ℓ(xt+1)) + d(ℓ(xt+1), xt+1) + d(xt+1, xt)(3)

= d(u, v) + 2 · d(xt+1,ℓ(xt+1))(4)

= d(u, v) + 2 · rxt+1
(5)

we get using Claim 4.4 that d(xt , xt+1) ≥ rxt
+ rxt+1

.
Hence, we get the following lower bound on the
distance between u and v:

d(u, v)≥ rx1
+ · · ·+ rxt

+ rxt+1

Using the result from Claim 5.2 on the above expres-
sion gives us the desired bound. !

The final task is to provide an upper bound on
the distance returned by the query algorithm; when
combined with the lower bound on the exact distance
between the source-destination pair, this will easily
lead to a bound on the stretch. The following lemma
suggests that the distance returned by the query
algorithm with recursion depth t can not be much
larger than the exact distance between u and v:

Lemma 5.4. Let x1, x2, . . . , xt , xt+1 be the set of ver-
tices on the recursion path (in some arbitrary order)
along which the final distance is returned and let xt+1

be the vertex that returns the distance in the last
recursive call. Then, algorithm QUERY(u, v, t) returns
distance that satisfies:

δ(u, v)≤ d(u, v) + 2 · rxt+1

Proof: If the query algorithm returns the exact dis-
tance, the lemma trivially holds. Consider the case
when such is not the case. We prove the lemma for
the case when the vertices on the recursion path lie
along the shortest path between u and v; as discussed
earlier, if any other set of vertices return a shorter
path, our analysis will only lead to a pessimistic
bound on the retrieved distance.

First, we claim that assuming that the last query is
on pair of vertices xt , xt+1, the distance returned by
the query algorithm is given by δ(u, v) = (d(u, v)−
d(xt , xt+1)) + δ(xt , xt+1). To see this, recall our as-
sumption that each of the vertices x1, x2, . . . , xt , xt+1

lie along the shortest path. Hence, line 10 always
adds up the exact distance in each recursive step;
this follows by noting that if the vertices lie along
the shortest path, then for any pair of vertices xi , x j ,
d ′xi
(x j) = d(xi , x j).

If xt+1 returns the distance via its landmark ver-
tex, the distance returned by the distance oracle
δ(u, v) is given by Eq. 1, or equivalently, by Eq. 2. The
upper bound of Eq. 3, or equivalently, of Eq. 4 on the
distance returned by the distance oracle follows using
triangle inequality. Finally, the last simplification
from Eq. 4 to Eq. 5 follows by the definition of ball
radius, leading to the proof of the lemma.

!

We are now ready to prove the desired bounds on
size of the oracle, the query time and the stretch of
the distances returned by the query algorithm:

Proof of Theorem 1.1. The claim regarding the size
of the distance oracle follows from Lemma 4.1. It
remains to bound the query time and stretch. We start
by proving the bound on query time. In the worst
case, the distance is returned after t recursive calls of
the query algorithm. First, we note that for any vertex
v, |B(v)| = O(α) and since the graph is assumed to
be µ-degree bounded, we have that |Γ(v) \ B(v)| =
O(αµ). Hence, for any vertex v, distances to vertices
in the ball and distance-via-ball to vertices in the
vicinity can be computed in time O(αµ + α logα)
using results of Lemma 4.1 and Claim 4.5.

Also, using the bound on the number of vertices in
Γ(v) \ B(v), we have that in the i-th call, there are at
most O((αµ)(i−1)) vertices for which the condition of
line 10 or line 13 is checked by the query algorithm;
and each of these vertices have a vicinity of size
O(αµ). Hence, the time required to complete the i-
th recursive query is O((αµ)i−1 · (αµ+ α logα)). We
now prove the bound on stretch. Using Lemma 5.4,
we have that:

δ(u, v) ≤ d(u, v) + 2 · rxt+1

≤ d(u, v) + 2 ·
d(u, v)

t + 1
(Lemma 5.3)

=

#

1+
2

t + 1

$

d(u, v)

!

6 Improving space-time trade-off

The distance oracle of Theorem 1.1 returns distances
of stretch 1+ 2/(t + 1) using O(m+ n2/α) space and
O((αµ)t +(αµ)t−1α logα) query time. In this section,
we show how to reduce the query time for the above
oracle to O((α+µ)t) at the expense of a small additive
stretch. We also show how to improve the space-time
trade-off of Theorem 1.1 for the special case of t = 2.

Theorem 6.1. Let G be any weighted undirected
graph with n vertices and m = O(nµ) edges and let
wuv be the weight of the heaviest edge along the
shortest path between any pair of vertices u and v.
For any integer t > 0, denote by β = 2/(t + 1). Then,
for any 1 ≤ α ≤ n and any integer t > 0, we can
construct a distance oracle of size O(m + n2/α) and
a query algorithm that, when given two vertices u
and v at distance d, returns a distance of at most
(1+ β)d + (2− β)wuv in time O

%

(α+ µ)t
&

.

For unweighted graphs with m = Õ(n5/4) edges,
for instance, the above theorem gives us a distance or-
acle of size Õ(n7/4) that returns stretch-(5/3,4/3) dis-
tances in O(

#
n) query time. This improves upon the

space-time trade-off of Theorem 1.1 (which achieves
the same space and query time only for graphs with
m= Õ(n) edges) at the expense of an additive stretch
of 4/3.

The distance oracle used by Theorem 6.1 is the
same as in Lemma 4.1; it is our query algorithm
(presented in Appendix B) that allows us to reduce
the query time at the expense of a small additive
stretch. The high level difference between the query
algorithm of Theorem 1.1 and the one for additive
stretch is that for any query between vertices u, v, it is
no more necessary to recurse through vertices in the
vicinity Γ(u) \ B(u); it suffices to recurse on vertices
in B(u) ∪ N(u) — that is, through vertices that are
either in the ball or the neighbors of the source. Since
balls are roughly a factor µ smaller than the vicinities,
we achieve a reduced query time. The additive factor
in stretch comes due to the fact that in comparison
to the query algorithm of Theorem 1.1, the amount
of progress that we make towards the destination in
each subsequent query is now reduced by an amount
equal to the weight of the edge along the shortest
path that connects the vertex in B(u) to its neighbor.
We prove Theorem 6.1 in Appendix B.

It is possible to further improve the space-time
trade-off in Theorem 1.1 and in Theorem 6.1 for
the very special case of t = 2 by using our query
algorithms on the distance oracles of [11]:

Theorem 6.2. Let G be any weighted undirected
graph with n vertices and m = O(nµ) edges. Then,

there exists a distance oracle of size O(n4/3m1/3) and
a query algorithm that, in the worst case, returns a
stretch-5/3 distance in time O(n1/3m1/3).

Theorem 6.3. Let G be any weighted undirected
graph with n vertices and m = O(nµ) edges. Then,
there exists a distance oracle of size O(n5/3) and
a query algorithm that, when given two vertices u
and v at distance d, returns a distance of at most
5/3× d + 4/3×wuv in time O(n2/3) where wuv is the
weight of the heaviest edge along the shortest path
between u and v.

The proofs for Theorem 6.2 and Theorem 6.3
use ideas similar to those of Theorem 1.1 and The-
orem 6.1, respectively. For sake of completeness, we
provide these proofs in Appendix C.

7 Open Problems

Pǎtraşcu and Roddity, in [11], raised the question
of achievable stretch with subquadratic size distance
oracles and polynomial, albeit sublinear, query times.
Our paper partially answers their question, but many
questions raised in [2,11] remain unresolved: can we
reduce the query time without significant loss in size
and/or stretch? Can we improve size and/or query
time for stretch greater than 2? Can we derive lower
bounds for some restricted cases, say O(polylog(n))
query time?

Allowing higher query time to reduce the size
and/or stretch leads to several interesting possibilities
in related problems:

• Distance oracles with constant query time can be
used to design compact routing schemes [16];
the case of super-constant query time is no
different — higher query time can often be
taken care of by using lightweight handshaking
schemes [2, 3]. Can we design distributed com-
pact routing schemes for our distance oracles
without significantly stretching the path of the
first packet?

• While it seems significantly more challenging,
can this line of research lead to a o(mn) time
combinatorial algorithm for computing all-pair
approximate shortest paths (APASP) for stretch
less than 2? The only result known for com-
puting APASP with stretch less than 2 is due to
Zwick, which uses matrix multiplication [6,20].

Acknowledgments. The authors would like to
thank the anonymous reviewers for their suggestions.
We gratefully acknowledge the support of NSF grant
CNS 10-17069.

References

[1] R. Agarwal, M. Caesar, P. B. Godfrey, and B. Y. Zhao.
Shortest paths in less than a millisecond. ACM SIG-
COMM Workshop on Online Social Networks (WOSN),
2012.

[2] R. Agarwal, P. B. Godfrey, and S. Har-Peled. Ap-
proximate distance queries and compact routing in
sparse graphs. Proc. IEEE Conference on Computer

Communications (INFOCOM), 1754–1762, 2011.

[3] R. Agarwal, P. B. Godfrey, and S. Har-Peled. Faster
approximate distance queries and compact routing
in sparse graphs. http://arxiv.org/abs/1201.2703,
2012. ArXiv.

[4] Y.-Y. Ahn, S. Han, H. Kwak, S. Moon, and H. Jeong.
Analysis of topological characteristics of huge online
social networking services. Proc. ACM International

Conference on World Wide Web (WWW), 835–844,
2007.

[5] S. Baswana, A. Gaur, S. Sen, and J. Upadhyay. Dis-
tance oracles for unweighted graphs: Breaking the
quadratic barrier with constant additive error. Proc.
International Colloquium on Automata, Languages and
Programming (ICALP), 609–621, 2008.

[6] S. Baswana and T. Kavitha. Faster algorithms for ap-
proximate distance oracles and all-pair small stretch
paths. Proc. IEEE Annual Symposium on Foundations
of Computer Science (FOCS), 591–602, 2006.

[7] S. Baswana and S. Sen. Approximate distance oracles
for unweighted graphs in expected O(n2) time. ACM
Transactions on Algorithms 2(4):557–577, 2006.

[8] CAIDA – The Cooperative Association for Internet
Data Analysis. 〈http://www.caida.org/home/〉.

[9] Y. Hyun, B. Huffaker, D. Andersen, E. Aben, M. Luckie,
kc claffy, and C. Shannon. The ipv4 routed /24 as
links dataset, November 2010.

[10] M. Mendel and A. Naor. Ramsey partitions and
proximity data structures. Journal of European Math-
ematical Society 2(9):253–275, 2007.

[11] M. Pǎtraşcu and L. Roditty. Distance oracles beyond
the Thorup-Zwick bound. Proc. IEEE Annual Sympo-

sium on Foundations of Computer Science (FOCS), 815–
823, 2010.

[12] E. Porat and L. Roditty. Preprocess, set, query! Proc.
European Conference on Algorithms (ESA), 603–614,
2011.

[13] M. Potamias, F. Bonchi, C. Castillo, and A. Gionis. Fast
shortest path distance estimation in large networks.
ACM Conference on Information and Knowledge Man-
agement (CIKM), 867–876, 2009.

[14] D. Schultes. Route Planning in Road Networks. PhD
Thesis, University of Karlsruhe, February, 2008.

[15] C. Sommer, E. Verbin, and W. Yu. Distance oracles
for sparse graphs. Proc. IEEE Annual Symposium on
Foundations of Computer Science (FOCS), 703–712,
2009.

[16] M. Thorup and U. Zwick. Compact routing schemes.
Proc. ACM Symposium on Parallel Algorithms and
Architectures (SPAA), 1–10, 2001.

[17] M. Thorup and U. Zwick. Approximate distance
oracles. Journal of the ACM 52(1):1–24, 2005.

[18] M. V. Vieira, B. M. Fonseca, R. Damazio, P. B. Golgher,
D. d. C. Reis, and B. Ribeiro-Neto. Efficient search
ranking in social networks. Proc. ACM Conference
on Information and Knowledge Management (CIKM),
563–572, 2007.

[19] C. Wulff-Nilsen. Approximate distance oracles with
improved preprocessing time. Proc. ACM-SIAM Sym-

posium on Discrete Algorithms (SODA), 202–208,
2012.

[20] U. Zwick. All-pairs shortest paths using bridging sets
and rectangular matrix multiplication. Journal of the

ACM 49(3):289–317, 2002.

Appendix

A Proofs for §4

We start by providing the proof for Lemma 4.1; this
requires proving the bound on size and the query
time. The bound on stretch follows easily using
triangle inequality and an essential unmodified proof
from [17]. Recall that we are given a weighted
undirected graph with n vertices and m = O(nµ)
edges; and the graph is µ-degree bounded.

Proof of Lemma 4.1. Recall that each vertex in the
graph is sampled uniform randomly with probability
1/α for inclusion in set L. Hence, it follows that
E[|L|] = O(n/α). Storing exact distances from
each vertex in the graph to each vertex in L, hence,
requires O(n2/α) space, in expectation. In addition,
each vertex stores the exact distance to each of
its neighbors, requiring an additional O(m) storage;
storing ℓ(v) and rv requires an additional O(1) space.
Hence, the size of the distance oracle is O(m+ n2/α),
in expectation.

We now bound the query time. To start with,
we note that since vertices in L are selected uniform
randomly with probability 1/α, each vertex v has a
ball of size O(α), in expectation; this is easily proved
using an argument similar to [17, Lemma 3.2]. Com-
puting the distance to each vertex in the ball requires
time O(αµ + α logα) using the modified Dijkstra’s
algorithm presented in [17]. Once the distances to
vertices in the ball are computed, the checks required
by the query algorithms can be performed in O(1)
time, leading to the desired proof. !

Proof of Claim 4.3. Consider the case when the
algorithm does not return the exact distance — that
is, when v /∈ B(u) and ru > 0. Let P = (u, x1, x2, . . . , v)
be the shortest path between u and v. Let i0 =
max{i|xi−1 ∈ P∩B(u)}. Now consider the vertex w =

http://arxiv.org/abs/1201.2703
http://www.caida.org/home/

xi0
. Clearly, w ∈ Γ(u) \ B(u) since xi0−1 ∈ B(u) and

w ∈ N(xi0−1); furthermore, d(u, w) ≥ ru > 0. The
proof follows by noting that w lies along the shortest
path from u to v and hence, d(u, v) − d(w, v) =
d(u, w). !

Proof of Claim 4.4. Let P = (u, x1, x2, . . . , v) be the
shortest path between u and v. Consider the vertex
w = xi0

, where i0 = max{i|xi−1 ∈ P ∩ B(u)}. By
definition, w ∈ Γ(u) \ B(u) and hence, d(u, w) ≥ ru.
Furthermore, since Γ(u) ∩ Γ(v) = ,, we have that
w /∈ Γ(v) and hence, d(v, w) ≥ rv . The proof follows
using the fact that w is on the shortest path between
u and v. !

Proof of Claim 4.5. We describe how to construct
a hash table H that contains, for each vertex v, the
distance-via-ball to all vertices w ∈ Γ(v) in time
O(|B(v)| · µ). This assumes that the hash tables
containing the vertices in the ball have already been
constructed. Consider any vertex v; first, we copy
each entry from the hash table containing distances
to vertices in B(v) into H. Next, we iterate through
each vertex x ∈ B(v) and perform the following:
for each neighbor x ′ ∈ N(x), check if x ′ ∈ B(v) —
if yes, do nothing. If x ′ /∈ B(v), check if there is
an entry for x ′ in H. If no, create an entry with
x ′ as the key and (d(v, x) + weight of edge(x , x ′))
as the value. If there is already an entry, check if
(d(v, x)+weight of edge(x , x ′)) is less than the value
corresponding to the key x ′ in H; if yes, update the
entry.

The above algorithm requires, for any vertex v,
iterating through all vertices in B(v) and their neigh-
bors; since the graph is assumed to be a µ-degree
bounded graph, computing distances-via-ball for any
vertex v requires O(|B(v)|× µ) time. Using proof of
Lemma 4.1, this amounts to O(αµ) time. !

B Proof of Theorem 6.1

In this section, we prove Theorem 6.1. The distance
oracle used in the proof is the same as that of
Lemma 4.1. Here, we give the query algorithm and
then analyze the stretch and the query time. Since
most of the results from §4 and §5 naturally follow
for the case of additive stretch, we only focus on
the differences that allow us to achieve an additive
stretch. Recall from the discussion in §4 that it
suffices to focus on µ = 2m/n degree bounded
graphs.

B.1 Query algorithm. The query algorithm for ad-
ditive stretch is given in Algorithm 2. The algorithm
is a slightly modified version of the query algorithm

from §5.

B.2 Analysis. Recall that our distance oracle for
additive stretch is the one used in Lemma 4.1; hence,
the bound on the size follows using the proof of
Lemma 4.1. Moreover, recall from the proof of
Lemma 4.1, that E[|L|] = O(n2/α) and for any vertex
v /∈ L, |B(v)| = O(α) and |Γ̄(v)| = O(α + µ), in
expectation.

Using the above easy observations, we now an-
alyze the stretch and the query time for the above
algorithm. We start with the following claim, which
is akin to Claim 4.3:

Claim B.1. For any u, v ∈ V and any β > 1, the
query algorithm of Lemma 4.1 either returns the exact
distance, or there exists a vertex w ∈ Γ̄(u) such that:
d(u, w) + β · d(w, v)< β · d(u, v).

Next, for the purposes of proving an additive
stretch, we will need a simple modification in the
statement of Claim 4.4, which we state below:

Claim B.2. Let u, v ∈ V and let P = (u, x1, x2, . . . , v)
be the shortest path between u and v with the weight
of the heaviest edge being wuv . Furthermore, let w =
xi0

, where i0 = max{i|xi ∈ P ∩ Γ̄(u)}. If w /∈ Γ̄(v),
d(u, v)≥ ru + rv − wuv.

Proof: Let P = (u, x1, x2, . . . , v) be the shortest path
between u and v. Let i0 = max{i|xi ∈ P ∩ Γ̄(u)} and
w = xi0

and w′ = xi0+1. Then, since w′ /∈ B(u),
we have that d(u, w′) ≥ ru and d(w, w′) ≤ wuv;
this gives us that d(u, w) = d(u, w′) − d(w, w′) ≥
ru − wuv. Furthermore, since w /∈ Γ̄(v), we get that
d(v, w) ≥ rv. The bound follows by noting that w
lies on the shortest path between u and v and hence,
d(u, v) = d(u, w) + d(v, w)≥ ru + rv − wuv. !

Note that the query algorithm for additive stretch,
similar to that of purely multiplicative stretch, iterates
through vertices of the source — the vertex with
larger ball radius. Hence, the results of Observa-
tion 5.1 and Claim 5.2 hold for the case of additive
stretch query algorithm. More precisely, using the
same notation as in §5, we can prove that rxt+1

≤ rxi
,

for all i ≤ t.

The rest of the proof is structured as for the case
of purely multiplicative stretch — we first provide
a lower bound on the exact distance between the
source-destination pair using the depth of recursion;
next, we provide an upper bound on the distance
returned by the query algorithm and finally, use these
two bounds to provide bounds on stretch.

Algorithm 2 QueryA (u, v, t): the distance query algorithm for additive stretch distance oracle. We denote by
Γ̄(v) the set of vertices in B(v)∪ N(v).

1: Compute d(u, x) for each x ∈ B(u) and compute d(v, y) for each y ∈ B(v)

2: Compute d ′u(x) for each x ∈ Γ̄(u) and compute d ′v(y) for each y ∈ Γ̄(v)
3: If v ∈ B(u) or u ∈ B(v)
4: return d(u, v)
5: If ru ≥ rv

6: q1← u; q2← v
7: Else
8: q1← v; q2← u

9: If t > 1
10: return minx∈Γ̄(q1)

'

d(q1, x) +QUERY(x ,q2, t − 1)
(

11: γ1←∞, γ2←∞
12: If Γ̄(q1)∩ Γ̄(q2) ̸= ,
13: γ1←minx∈Γ̄(q1)∩Γ̄(q2)

'

d(q1, x) + d(q2, x)
(

14: γ2← d(q2,ℓ(q2)) + d(q1,ℓ(q2))
15: return min{γ1,γ2}

The central difference between the two query
algorithm is in terms of the lower bound on the exact
distance between the source-destination pair. We
have the following lemma that allows us to prove the
desired bound on the additive stretch. The proof to
Lemma B.3 is essentially similar to that of Lemma 5.3
– the only difference is that we use the bound of
Claim B.2 rather than Claim 4.4.

Lemma B.3. Let x1, x2, . . . , xt , xt+1 be the set of ver-
tices on the recursion path (in some arbitrary order)
along which the final distance is returned and let
xt+1 be the vertex that returns the distance in the
last recursive call. Then, either the query algorithm
returns the exact distance or the distance between the
source and the destination is bounded by below as:

d(u, v)≥ (t + 1) · rxt+1
− t · wuv

Proof: Assume that the vertices along the recursion
path lie on the shortest path between u and v and
that the query algorithm does not return the exact
distance between u and v. Consider some query
QueryA(x , y, i). Let P = (x , x1, x2, . . . , y) be the
shortest path between x and y . Let i0 = max{i|xi ∈
P ∩ Γ̄(x)} and x ′ = xi0

. Since x initiates a recursive

call through all vertices in Γ̄(x), one such query must
be initiated to x ′; consider query QueryA(x ′, y, i− 1).
Then, since N(x ′) /∈ Γ̄(x), we have that d(x , x ′) ≥
rx − wx y (recall, rx is defined to be the radius of the
ball B(x)). Using the fact that x ′ lies on the shortest
path between x and y , we get that:

d(x , y) = d(x , x ′) + d(x ′, y)≥ rx −wx y + d(x ′, y)

Using the above expression on the pair of vertices
along the recursion path for QueryA(u, v, t) and as-
suming that the last query is performed on pair of
vertices xt , xt+1, we get the following expression as a
lower bound on the distance between u and v:

d(u, v)≥ rx1
−wuv + · · ·+ rxt−1

−wuv + d(xt , xt+1)

which is equivalent to

d(u, v)≥ rx1
+rx2

+· · ·+rxt−1
−(t−1)wuv+d(xt , xt+1)

In the last step, we use Claim B.2 on xt , xt+1 pair,
giving us: d(xt , xt+1) ≥ rxt

+ rxt+1
− wuv . Hence,

we get the following lower bound on the distance
between u and v:

d(u, v)≥ rx1
+ · · ·+ rxt

+ rxt+1
− t ·wuv

Recall that the result of Claim 5.2 holds for the
distance oracle and the query algorithm for additive
stretch; using it on the above expression gives us the
desired bound. !

The distance returned by the query algorithm for
additive stretch can be bounded as follows:

Lemma B.4. Let x1, x2, . . . , xt , xt+1 be the set of ver-
tices that were ever queried by the query algorithm
(in some arbitrary order) and let xt+1 be the vertex
that returns the distance via its landmark vertex
ℓ(xt+1). Then, the algorithm QUERYA(u, v, t) returns
distance that satisfies:

δ(u, v)≤ d(u, v) + 2 · rxt+1

The proof for the above lemma is the unmodified
proof of Lemma 5.4 from §5.

Proof of Theorem 6.1. Using the oracle of
Lemma 4.1, we get the bound on size. It remains to
bound the stretch and query time; we start with the
latter. In the worst case, the distance is returned after
t recursive calls. In the i-th call, there are at most
O((α + µ)i−1) vertices for which line 10 or line 13
of the algorithm is executed; each of these vertices
recurse through at most O(α + µ) vertices. Hence,
i-th call takes time O

%

(α+ µ)t
&

.

We now prove the bound on stretch. Using
Lemma B.4, we have that

δ(u, v)≤ d(u, v) + 2 · rxt+1

which using the bound from Lemma B.3, gives us:

δ(u, v) ≤ d(u, v) + 2 ·
d(u, v) + t · wuv

t + 1

=

#

1+
2

t + 1

$

d(u, v) +
2t

t + 1
wuv

=

#

1+
2

t + 1

$

d(u, v) +

#

2−
2

t + 1

$

wuv

which by setting β = 2/(t + 1), completes the
proof. !

C Improving space-time trade-off for t = 2

We start by briefly describing the high level idea
of the oracle of [11]. Their distance oracle, as in
[17], constructs a set L of landmark vertices. Each
landmark vertex stores the distance to each other
vertex in the graph. Each vertex v ∈ V \ L stores
the distances to the vertices in its ball B(v) and to
their neighbors; that is, to the vertices in its vicinity
Γ(v). Furthermore, each vertex v ∈ V \ L also stores
distances to vertices u for which Γ(u)∩ Γ(v) ̸= ,; lets
call this extended vicinity set and refer to it as Γ′(v).
When queried for distances between two vertices u
and v, if u ∈ Γ′(v) or if v ∈ Γ′(u), the distance
oracle returns the exact distance; if not, then the
vertex with smaller ball radius returns the distance
to the destination via its landmark vertex – this gives
a bound of 2 on the stretch.

By using an elegant landmark selection algorithm,
they are able to show that there exists a set of
O(n1/3m1/3) landmark vertices such that every vertex
in the graph has an extended vicinity set of size
no more than O(n1/3m1/3). This leads to the size
bound on the distance oracle – storing distances from
landmark vertices to each other vertex in the graph
requires O(n4/3m1/3) space, which is same as each
vertex storing its extended vicinity set. Hence, the
total size of the distance oracle is O(n4/3m1/3).

If we use the query algorithm of §5 on this
distance oracle, the algorithm checks in time
O(n1/3m1/3) whether there exists a vertex x ∈ Γ′(u)
such that Γ′(x)∩Γ′(v) ̸= ,. If such an x is found, the
exact distance will be returned. If no such x exists,
the returned distance is minimum over all x ∈ Γ′(u),
δ(u, v) = d(u, x) + δ(x , v). As earlier, we can restrict
the analysis to all vertices x that lie along the shortest
path between u and v (there must be some vertex in
Γ′(u) that lies along the shortest path, by definition
of Γ′(u)), which gives us that the returned distance is
upper bounded as δ(u, v) ≤ d(u, v) + 2 · rx , precisely
as in the proofs of Lemma 5.4 and of Lemma B.4. The
remaining task is to find a lower bound on d(u, v),
for which we have the following lemma:

Lemma C.1. Let P = (u, x1, x2, . . . , v) be the shortest
path between u and v and let i1 = max{i|xi ∈
Γ′(u) \ B(u)}. If the final distance is returned via the
landmark vertex of a vertex, d(u, v)≥ ru + rxi1

+ rv .

Proof: Let i1 = max{i|xi ∈ Γ′(u) \ B(u)} and let i2 =
max{i|xi ∈ Γ′(xi1

)}. Since Γ′(xi1
)∩Γ′(v) = ,, we have

that xi2
/∈ Γ′(v). Hence, as in the proof of Lemma 4.4,

we have that d(xi1
, v) ≥ rxi1

+ rv. Furthermore, since

d(u, rxi1
)≥ ru, we get the desired bound. !

Without loss of generality, assume that xi1
is

the vertex that returns the distance via its landmark
vertex, then, we have that d(u, v) ≥ 3 · rxi1

, which

using the upper bound from the discussion above
leads to 5/3 being an upper bound on the stretch.

The bound on the query time follows from the
fact that only one of the vertices out of u or v can
explore the vertices in its extended vicinity leading
to O(n1/3m1/3) query time. Exploring the vicinities
further, as in our earlier algorithms, will lead to
super linear query times, for which trivial oracles are
known.

For the proof of Theorem 6.3, we note that every-
thing but the lower bound on the distance between
u and v remains the same. For the lower bound,
we have the following lemma, the proof to which is
exactly similar to that of Claim B.2:

Lemma C.2. Let P = (u, x1, x2, . . . , v) be the shortest
path between u and v and let i1 = max{i|xi ∈ Γ′(u) \
B(u)}. If the query algorithm returns the distance via
the landmark vertex of some vertex, d(u, v) ≥ ru +
rxi1
+ rv − 2wuv .

Using this lemma, along with the upper bound on
the returned distance, we get the desired bound on
the stretch. The bounds on size and query time follow
from the construction of the distance oracle.

	Introduction
	Related work
	Overview of our technique
	A distance oracle for stretch 3
	A recursive query algorithm
	Formal Analysis of the query algorithm

	Improving space-time trade-off
	Open Problems
	Proofs for §4
	Proof of Theorem 6.1
	Query algorithm.
	Analysis.

	Improving space-time trade-off for t=2

